Van der Mynsbrugge Jeroen, Head-Gordon Martin, Bell Alexis T
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.
Department of Chemistry, University of California, Berkeley, CA 94720, USA.
J Mater Chem A Mater. 2021 Jan 28;9(4):2161-2174. doi: 10.1039/d0ta11254b. Epub 2020 Dec 28.
Passive NO adsorbers (PNA) using Pd/zeolites have emerged as a promising solution for the reduction of cold-start emissions from vehicle exhaust. However, the nature of the active sites and the mechanisms underlying NO adsorption in Pd/zeolites remain a subject of ongoing investigation. In this study, we employ quantum chemical simulations to investigate the structure of Pd species in cation-exchange sites at isolated Al and Al pairs in the 6-ring and 8-ring of the CHA framework, before the introduction of NO. Our calculations show that the speciation of Pd in these exchange sites strongly depends on the precise Al arrangement within the framework, as well as the operating conditions. Ionically dispersed Pd is found to be the most favorable species over a wide range of oxidizing and reducing conditions. Small oligomers of PdO and metallic Pd do not appear to be competitive at either isolated Al or Al pairs. Notably, our calculations show that ion exchange sites other than next-next-nearest neighbor Al pairs in the 6-ring will be preferentially occupied by Pd instead of Pd. The stability of Pd in the zeolite environment is an interesting contrast with its rareness in molecular Pd compounds. Nonetheless, a detailed analysis of the electronic structure shows that predicted Pd oxidation states are consistent with chemical intuition for all complexes investigated in this study. We also discuss the potential ambiguity in Pd characterization provided by typical experimental techniques such as XANES, EXAFS and UV-VIS, and highlight the need for additional EPR spectroscopy studies to further elucidate the initial Pd speciation in zeolites for PNA applications.
使用钯/沸石的被动式氮氧化物吸附剂(PNA)已成为减少车辆尾气冷启动排放的一种有前景的解决方案。然而,钯/沸石中活性位点的性质以及氮氧化物吸附的潜在机制仍是一个正在研究的课题。在本研究中,我们采用量子化学模拟来研究在引入氮氧化物之前,CHA骨架六元环和八元环中孤立铝位点和铝对位点上钯物种的结构。我们的计算表明,这些交换位点上钯的形态强烈依赖于骨架内精确的铝排列以及操作条件。发现在广泛的氧化和还原条件下,离子分散的钯是最有利的物种。氧化钯和金属钯的小寡聚物在孤立铝位点或铝对位点上似乎都没有竞争力。值得注意的是,我们的计算表明,六元环中次近邻铝对以外的离子交换位点将优先被钯而不是钯占据。钯在沸石环境中的稳定性与其在分子钯化合物中的稀有性形成有趣的对比。尽管如此,对电子结构的详细分析表明,本研究中所研究的所有配合物的预测钯氧化态与化学直觉一致。我们还讨论了典型实验技术如XANES、EXAFS和UV-VIS在钯表征中可能存在的模糊性,并强调需要额外的电子顺磁共振光谱研究来进一步阐明用于PNA应用的沸石中初始钯的形态。