Wan Yanhua, Song Keming, Chen Weihua, Qin Changdong, Zhang Xixue, Zhang Jiyu, Dai Hongliu, Hu Zhe, Yan Pengfei, Liu Chuntai, Sun Shuhui, Chou Shu-Lei, Shen Changyu
College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, P. R. China.
National Engineering and Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China.
Angew Chem Int Ed Engl. 2021 May 10;60(20):11481-11486. doi: 10.1002/anie.202102368. Epub 2021 Apr 6.
High initial coulombic efficiency is highly desired because it implies effective interface construction and few electrolyte consumption, indicating enhanced batteries' life and power output. In this work, a high-capacity sodium storage material with FeS nanoclusters (≈1-2 nm) embedded in N, S-doped carbon matrix (FeS /N,S-C) was synthesized, the surface of which displays defects-repaired characteristic and detectable dot-matrix distributed Fe-N-C/Fe-S-C bonds. After the initial discharging process, the uniform ultra-thin NaF-rich (≈6.0 nm) solid electrolyte interphase was obtained, thereby achieving verifiable ultra-high initial coulombic efficiency (≈92 %). The defects-repaired surface provides perfect platform, and the catalysis of dot-matrix distributed Fe-N-C/Fe-S-C bonds to the rapid decomposing of NaSO CF and diethylene glycol dimethyl ether successfully accelerate the building of two-dimensional ultra-thin solid electrolyte interphase. DFT calculations further confirmed the catalysis mechanism. As a result, the constructed FeS /N,S-C provides high reversible capacity (749.6 mAh g at 0.1 A g ) and outstanding cycle stability (92.7 %, 10 000 cycles, 10.0 A g ). Especially, at -15 °C, it also obtains a reversible capacity of 211.7 mAh g at 10.0 A g . Assembled pouch-type cell performs potential application. The insight in this work provides a bright way to interface design for performance improvement in batteries.
高初始库仑效率是非常理想的,因为这意味着有效的界面构建和较少的电解质消耗,表明电池的寿命和功率输出得到增强。在这项工作中,合成了一种嵌入N、S掺杂碳基质(FeS /N,S-C)中的具有FeS纳米团簇(≈1-2 nm)的高容量储钠材料,其表面呈现缺陷修复特征和可检测的点阵分布的Fe-N-C/Fe-S-C键。在初始放电过程后,获得了均匀的富含超薄NaF(≈6.0 nm)的固体电解质界面,从而实现了可验证的超高初始库仑效率(≈92%)。缺陷修复表面提供了完美的平台,点阵分布的Fe-N-C/Fe-S-C键对NaSO CF和二甘醇二甲醚快速分解的催化作用成功加速了二维超薄固体电解质界面的构建。密度泛函理论计算进一步证实了催化机理。结果,构建的FeS /N,S-C提供了高可逆容量(在0.1 A g 时为749.6 mAh g )和出色的循环稳定性(92.7%,10000次循环,10.0 A g )。特别是,在-15 °C时,在10.0 A g 下它还获得了211.7 mAh g 的可逆容量。组装的软包电池具有潜在的应用价值。这项工作中的见解为通过界面设计提高电池性能提供了一条光明的途径。