Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
J Chem Phys. 2020 May 21;152(19):194904. doi: 10.1063/5.0007271.
There is a great interest in the synthesis and characterization of polyelectrolytes that mimic naturally occurring bottlebrush polyelectrolytes to capitalize on the unique properties of this class of macromolecules. Charged bottlebrush polymers form the protective mucus layer in the lungs, stomach, and orifices of animals and provide osmotic stabilization and lubrication to joints. In the present work, we systematically investigate bottlebrush poly(sodium acrylates) through a combination of measurements of solution properties (osmometry, small-angle neutron scattering, and dynamic light scattering) and molecular dynamics simulations, where the bottlebrush properties are compared in each case to their linear polymer counterparts. These complementary experimental and computational methods probe vastly different length- and timescales, allowing for a comprehensive characterization of the supermolecular structure and dynamics of synthetic polyelectrolyte bottlebrush molecules in solution.
人们对合成模拟天然瓶刷聚合物的聚电解质很感兴趣,以利用这类大分子的独特性质。带电荷的瓶刷聚合物在动物的肺部、胃部和孔道中形成保护性黏液层,并为关节提供渗透稳定和润滑。在目前的工作中,我们通过对溶液性质(渗透压法、小角中子散射和动态光散射)的测量和分子动力学模拟的组合,系统地研究了瓶刷聚(丙烯酸钠),在每种情况下,将瓶刷特性与其线性聚合物对应物进行了比较。这些互补的实验和计算方法探测了截然不同的长度和时间尺度,从而可以全面表征合成聚电解质瓶刷分子在溶液中的超分子结构和动力学。