Ratcliff Laura E, Dawson William, Fisicaro Giuseppe, Caliste Damien, Mohr Stephan, Degomme Augustin, Videau Brice, Cristiglio Viviana, Stella Martina, D'Alessandro Marco, Goedecker Stefan, Nakajima Takahito, Deutsch Thierry, Genovese Luigi
Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom.
RIKEN Center for Computational Science, Kobe, Japan.
J Chem Phys. 2020 May 21;152(19):194110. doi: 10.1063/5.0004792.
The BigDFT project was started in 2005 with the aim of testing the advantages of using a Daubechies wavelet basis set for Kohn-Sham (KS) density functional theory (DFT) with pseudopotentials. This project led to the creation of the BigDFT code, which employs a computational approach with optimal features of flexibility, performance, and precision of the results. In particular, the employed formalism has enabled the implementation of an algorithm able to tackle DFT calculations of large systems, up to many thousands of atoms, with a computational effort that scales linearly with the number of atoms. In this work, we recall some of the features that have been made possible by the peculiar properties of Daubechies wavelets. In particular, we focus our attention on the usage of DFT for large-scale systems. We show how the localized description of the KS problem, emerging from the features of the basis set, is helpful in providing a simplified description of large-scale electronic structure calculations. We provide some examples on how such a simplified description can be employed, and we consider, among the case-studies, the SARS-CoV-2 main protease.
BigDFT项目始于2005年,旨在测试将Daubechies小波基组用于含赝势的Kohn-Sham(KS)密度泛函理论(DFT)的优势。该项目催生了BigDFT代码,它采用了一种具有灵活性、性能和结果精度等最佳特性的计算方法。特别是,所采用的形式体系使得能够实现一种算法,该算法能够处理大型系统(多达数千个原子)的DFT计算,其计算量与原子数呈线性比例增长。在这项工作中,我们回顾了Daubechies小波的特殊性质所带来的一些特性。特别是,我们将注意力集中在DFT在大规模系统中的应用上。我们展示了从基组特性中产生的KS问题的局域描述如何有助于提供大规模电子结构计算的简化描述。我们给出了一些关于如何采用这种简化描述的例子,并且在案例研究中考虑了新型冠状病毒2型主蛋白酶。