Jones Michael D K, Dawson James A, Campbell Stephen, Barrioz Vincent, Whalley Lucy D, Qu Yongtao
Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle Upon Tyne, United Kingdom.
Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom.
Front Chem. 2022 Jun 21;10:920676. doi: 10.3389/fchem.2022.920676. eCollection 2022.
Developing effective device architectures for energy technologies-such as solar cells, rechargeable batteries or fuel cells-does not only depend on the performance of a single material, but on the performance of multiple materials working together. A key part of this is understanding the behaviour at the interfaces between these materials. In the context of a solar cell, efficient charge transport across the interface is a pre-requisite for devices with high conversion efficiencies. There are several methods that can be used to simulate interfaces, each with an in-built set of approximations, limitations and length-scales. These methods range from those that consider only composition (e.g. data-driven approaches) to continuum device models (e.g. drift-diffusion models using the Poisson equation) and atomistic models (developed using e.g. density functional theory). Here we present an introduction to interface models at various levels of theory, highlighting the capabilities and limitations of each. In addition, we discuss several of the various physical and chemical processes at a heterojunction interface, highlighting the complex nature of the problem and the challenges it presents for theory and simulation.
为太阳能电池、可充电电池或燃料电池等能源技术开发有效的器件架构,不仅取决于单一材料的性能,还取决于多种材料共同作用的性能。其中的一个关键部分是了解这些材料之间界面处的行为。在太阳能电池的背景下,跨界面的高效电荷传输是实现高转换效率器件的先决条件。有几种方法可用于模拟界面,每种方法都有一套内在的近似、限制和长度尺度。这些方法从仅考虑成分的方法(如数据驱动方法)到连续介质器件模型(如使用泊松方程的漂移扩散模型)和原子模型(如使用密度泛函理论开发的模型)。在此,我们介绍不同理论层次的界面模型,突出每种模型的能力和局限性。此外,我们讨论异质结界面处的几种物理和化学过程,突出问题的复杂性以及它给理论和模拟带来的挑战。