Suppr超能文献

利用可见-近红外-短波红外光谱区域估算石英与粘土矿物的相对丰度

Estimation of the Relative Abundance of Quartz to Clay Minerals Using the Visible-Near-Infrared-Shortwave-Infrared Spectral Region.

作者信息

Francos Nicolas, Notesco Gila, Ben-Dor Eyal

机构信息

Remote Sensing Laboratory, Geography Department, Porter School of the Environment and Earth Sciences, Faculty of Exact Science, Tel Aviv University, Tel Aviv, Israel.

出版信息

Appl Spectrosc. 2021 Jul;75(7):882-892. doi: 10.1177/0003702821998302. Epub 2021 Mar 9.

Abstract

Quartz is the most abundant mineral on the earth's surface. It is spectrally active in the longwave infrared (LWIR) region with no significant spectral features in the optical domain, i.e., visible-near-infrared-shortwave-infrared (Vis-NIR-SWIR) region. Several space agencies are planning to mount optical image spectrometers in space, with one of their missions being to map raw materials. However, these sensors are active across the optical region, making the spectral identification of quartz mineral problematic. This study demonstrates that indirect relationships between the optical and LWIR regions (where quartz is spectrally dominant) can be used to assess quartz content spectrally using solely the optical region. To achieve this, we made use of the legacy Israeli soil spectral library, which characterizes arid and semiarid soils through comprehensive chemical and mineral analyses along with spectral measurements across the Vis-NIR-SWIR region (reflectance) and LWIR region (emissivity). Recently, a Soil Quartz Clay Mineral Index (SQCMI) was developed using mineral-related emissivity features to determine the content of quartz, relative to clay minerals, in the soil. The SQCMI was highly and significantly correlated with the Vis-NIR-SWIR spectral region (R= 0.82, root mean square error (RMSE) = 0.01, ratio of performance to deviation (RPD) = 2.34), whereas direct estimation of the quartz content using a gradient-boosting algorithm against the Vis-NIR-SWIR region provided poor results (R= 0.45, RMSE = 15.63, RPD = 1.32). Moreover, estimation of the SQCMI value was even more accurate when only the 2000-2450 nm spectral range (atmospheric window) was used (R= 0.9, RMSE = 0.005, RPD = 1.95). These results suggest that reflectance data across the 2000-2450 nm spectral region can be used to estimate quartz content, relative to clay minerals in the soil satisfactorily using hyperspectral remote sensing means.

摘要

石英是地球表面最丰富的矿物。它在长波红外(LWIR)区域具有光谱活性,在光学领域,即可见光 - 近红外 - 短波红外(Vis - NIR - SWIR)区域没有明显的光谱特征。几个空间机构计划在太空中安装光学图像光谱仪,其任务之一是绘制原材料地图。然而,这些传感器在整个光学区域都有活性,使得石英矿物的光谱识别存在问题。本研究表明,光学区域和LWIR区域(石英在该区域具有光谱优势)之间的间接关系可用于仅使用光学区域来光谱评估石英含量。为实现这一目标,我们利用了以色列遗留的土壤光谱库,该光谱库通过全面的化学和矿物分析以及在Vis - NIR - SWIR区域(反射率)和LWIR区域(发射率)的光谱测量来表征干旱和半干旱土壤。最近,利用与矿物相关的发射率特征开发了一种土壤石英粘土矿物指数(SQCMI),以确定土壤中石英相对于粘土矿物的含量。SQCMI与Vis - NIR - SWIR光谱区域高度显著相关(R = 0.82,均方根误差(RMSE)= 0.01,性能与偏差比(RPD)= 2.34),而使用梯度提升算法针对Vis - NIR - SWIR区域直接估计石英含量的结果较差(R = 0.45,RMSE = 15.63,RPD = 1.32)。此外,仅使用2000 - 2450 nm光谱范围(大气窗口)时,SQCMI值的估计甚至更准确(R = 0.9,RMSE = 0.005,RPD = 1.95)。这些结果表明,利用高光谱遥感手段,2000 - 2450 nm光谱区域的反射率数据可用于令人满意地估计土壤中相对于粘土矿物的石英含量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98b1/8255506/ced2c3efc793/10.1177_0003702821998302-fig8.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验