Suppr超能文献

利用可见-短波近红外和近红外光谱预测干旱地区钙质表土的一些物理化学性质并进行变异性制图。

Prediction and variability mapping of some physicochemical characteristics of calcareous topsoil in an arid region using Vis-SWNIR and NIR spectroscopy.

机构信息

Department of Biosystems Engineering, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.

Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.

出版信息

Sci Rep. 2022 May 19;12(1):8435. doi: 10.1038/s41598-022-12276-4.

Abstract

Site-specific management of soils needs continuous measurements of soil physicochemical characteristics. In this study, Vis-NIR spectroscopy with two spectroscopic instruments, including charge-coupled device (CCD) and indium-gallium-arsenide (InGaAs) spectrometers, was adopted to estimate some physicochemical characteristics of a calcareous topsoil in an arid climate. Partial least squares (PLS) as linear and artificial neural networks (ANN) as nonlinear multivariate techniques were utilized to enhance the accuracy of prediction. The best predictive models were then used to extract the variability maps of physicochemical characteristics. Diffuse reflectance spectra of 151 samples, collected from the calcareous topsoil, were acquired in the visible and short-wavelength near-infrared (Vis-SWNIR) (400-1100 nm) and near-infrared (NIR) (950-1650 nm) spectral ranges using CCD and InGaAs spectrometers, respectively. The results showed that NIR spectral data of the InGaAs spectrometer was necessary to reach the best predictions for all selected soil properties. The best predictive models based on the optimum spectral range could allow us the excellent predictions of sand (RPD = 2.63) and silt (RPD = 2.52), and very good estimations of clay (RPD = 2.35) and electrical conductivity (EC) (RPD = 2.224) by ANN and very good prediction of calcium carbonate equivalent (CCE) (RPD = 2.01) by PLS. The CCD device, however, resulted in acceptable predictions of sand (RPD = 2.13, very good) and clay (RPD = 1.66, fair) by ANN, and silt (RPD = 1.78, good), EC (RPD = 1.84, good) and CCE (RPD = 1.67, fair) by PLS. Similar variability was attained between pairs of predicted maps by best models and reference-measured maps for all studied soil properties. For clay, sand, silt, and CCE, the Vis/SWNIR-predicted and equivalent reference-measured maps had acceptable similarities, indicating the potential application of low-cost CCD spectrometers for prediction and the variability mapping of these parameters.

摘要

土壤的特定地点管理需要连续测量土壤理化特性。在这项研究中,采用了带有两个光谱仪的可见-近红外(Vis-NIR)光谱,包括电荷耦合器件(CCD)和砷化铟镓(InGaAs)光谱仪,以估计干旱气候下钙质表土的一些理化特性。偏最小二乘法(PLS)作为线性和人工神经网络(ANN)作为非线性多元技术被用来提高预测的准确性。然后,利用最佳预测模型提取理化特性的变异性图。从钙质表土中采集了 151 个样本的漫反射光谱,分别使用 CCD 和 InGaAs 光谱仪在可见和短波近红外(Vis-SWNIR)(400-1100nm)和近红外(NIR)(950-1650nm)光谱范围内进行了测量。结果表明,为了对所有选定的土壤特性进行最佳预测,需要使用 InGaAs 光谱仪的近红外光谱数据。基于最佳光谱范围的最佳预测模型可以使我们对砂(RPD=2.63)和粉土(RPD=2.52)进行出色的预测,并对粘土(RPD=2.35)和电导率(EC)(RPD=2.224)进行非常好的估计,而对碳酸钙当量(CCE)(RPD=2.01)的 PLS 则进行非常好的预测。然而,CCD 设备通过 ANN 对砂(RPD=2.13,非常好)和粘土(RPD=1.66,良好),以及粉土(RPD=1.78,良好),EC(RPD=1.84,良好)和 CCE(RPD=1.67,良好)进行了可接受的预测。对于所有研究的土壤特性,最佳模型和参考测量图之间的预测图对之间的可变性相似。对于粘土、砂、粉土和 CCE,Vis/SWNIR 预测和等效参考测量图具有可接受的相似性,表明低成本 CCD 光谱仪在这些参数的预测和变异性制图方面具有潜在的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14cf/9120438/70283bec1155/41598_2022_12276_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验