Suppr超能文献

基于图像相似性的 X 射线下心律装置特征点匹配识别。

Image similarity-based cardiac rhythm device identification from X-rays using feature point matching.

机构信息

Department of Cardiology, Ehime Prefectural Central Hospital, Matsuyama, Ehime, Japan.

出版信息

Pacing Clin Electrophysiol. 2021 Apr;44(4):633-640. doi: 10.1111/pace.14209. Epub 2021 Mar 15.

Abstract

AIMS

Identifying the manufacturer and the type of cardiac implantable electronic devices (CIEDs) is important in emergent clinical settings. Recent studies have illustrated that artificial neural network models can successfully recognize CIEDs from chest X-ray images. However, all existing methods require a vast amount of medical data to train the classification model. Here, we have proposed a novel method to retrieve an identical CIED image from an image database by employing the feature point matching algorithm.

METHODS AND RESULTS

A total of 653 unique X-ray images from 456 patients who visited our pacemaker clinic between April 2012 and August 2020 were collected. The device images were manually square-shaped, and was thereafter resized to 224 × 224 pixels. A scale-invariant feature transform (SIFT) algorithm was used to extract the keypoints from the query image and reference images. Paired feature points were selected via brute-force matching, and the average Euclidean distance was calculated. The image with the shortest average distance was defined as the most similar image. The classification performance was indicated by accuracy, precision, recall, and F1-score for detecting the manufacturers and model groups, respectively. The average accuracy, precision, recall, and F-1 score for the manufacturer classification were 97.0%, 0.97, 0.96, and 0.96, respectively. For the model classification task, the average accuracy, precision, recall, and F-1 score were 93.2%, 0.94, 0.92, and 0.93, respectively, all of which were higher than those of the previously reported machine learning models.

CONCLUSION

Feature point matching is useful for identifying CIEDs from X-ray images.

摘要

目的

在紧急临床情况下,识别心脏植入式电子设备(CIED)的制造商和类型非常重要。最近的研究表明,人工神经网络模型可以成功地从胸部 X 射线图像中识别 CIED。然而,所有现有的方法都需要大量的医疗数据来训练分类模型。在这里,我们提出了一种新的方法,通过使用特征点匹配算法从图像数据库中检索相同的 CIED 图像。

方法和结果

共收集了 2012 年 4 月至 2020 年 8 月期间来我院起搏器诊所就诊的 456 名患者的 653 张独特 X 射线图像。设备图像被手动方形化,然后调整为 224×224 像素。使用尺度不变特征变换(SIFT)算法从查询图像和参考图像中提取关键点。通过暴力匹配选择配对特征点,并计算平均欧几里得距离。平均距离最短的图像被定义为最相似的图像。制造商分类的分类性能由准确率、精度、召回率和 F1 分数表示,分别用于检测制造商和型号组。制造商分类的平均准确率、精度、召回率和 F1 分数分别为 97.0%、0.97、0.96 和 0.96。对于型号分类任务,平均准确率、精度、召回率和 F1 分数分别为 93.2%、0.94、0.92 和 0.93,均高于之前报道的机器学习模型。

结论

特征点匹配可用于从 X 射线图像中识别 CIED。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验