IEEE J Biomed Health Inform. 2021 Aug;25(8):3041-3051. doi: 10.1109/JBHI.2021.3050483. Epub 2021 Aug 5.
The traditional differential diagnosis of membranous nephropathy (MN) mainly relies on clinical symptoms, serological examination and optical renal biopsy. However, there is a probability of false positives in the optical inspection results, and it is unable to detect the change of biochemical components, which poses an obstacle to pathogenic mechanism analysis. Microscopic hyperspectral imaging can reveal detailed component information of immune complexes, but the high dimensionality of microscopic hyperspectral image brings difficulties and challenges to image processing and disease diagnosis. In this paper, a novel classification framework, including spatial-spectral density peaks-based discriminant analysis (SSDP), is proposed for intelligent diagnosis of MN using a microscopic hyperspectral pathological dataset. SSDP constructs a set of graphs describing intrinsic structure of MHSI in both spatial and spectral domains by employing density peak clustering. In the process of graph embedding, low-dimensional features with important diagnostic information in the immune complex are obtained by compacting the spatial-spectral local intra-class pixels while separating the spectral inter-class pixels. For the MN recognition task, a support vector machine (SVM) is used to classify pixels in the low-dimensional space. Experimental validation data employ two types of MN that are difficult to distinguish with optical microscope, including primary MN and hepatitis B virus-associated MN. Experimental results show that the proposed SSDP achieves a sensitivity of 99.36%, which has potential clinical value for automatic diagnosis of MN.
膜性肾病 (MN) 的传统鉴别诊断主要依赖于临床症状、血清学检查和光学肾活检。然而,光学检查结果存在假阳性的可能性,并且无法检测生化成分的变化,这对发病机制分析构成了障碍。微观高光谱成像可以揭示免疫复合物的详细成分信息,但微观高光谱图像的高维性给图像处理和疾病诊断带来了困难和挑战。本文提出了一种基于空间-光谱密度峰的判别分析 (SSDP) 的新分类框架,用于使用微观高光谱病理数据集进行 MN 的智能诊断。SSDP 通过密度峰聚类构建了一组描述 MHSI 在空间和光谱域内内在结构的图。在图嵌入过程中,通过压缩空间-光谱局部内类像素并分离光谱类间像素,获得具有免疫复合物中重要诊断信息的低维特征。对于 MN 识别任务,使用支持向量机 (SVM) 对低维空间中的像素进行分类。实验验证数据采用两种难以用光学显微镜区分的 MN,包括原发性 MN 和乙型肝炎病毒相关性 MN。实验结果表明,所提出的 SSDP 达到了 99.36%的灵敏度,对 MN 的自动诊断具有潜在的临床价值。