Winkelman Max A, Koppes Abigail N, Koppes Ryan A, Dai Guohao
Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA.
Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA.
APL Bioeng. 2021 Mar 3;5(1):011507. doi: 10.1063/5.0027211. eCollection 2021 Mar.
The ability of mammalian neural stem cells (NSCs) to self-renew and differentiate throughout adulthood has made them ideal to study neurogenesis and attractive candidates for neurodegenerative disease therapies. In the adult mammalian brain, NSCs are maintained in the neurovascular niche (NVN) where they are found near the specialized blood vessels, suggesting that brain endothelial cells (BECs) are prominent orchestrators of NSC fate. However, most of the current knowledge of the mammalian NVN has been deduced from nonhuman studies. To circumvent the challenges of studies, models have been developed to better understand the reciprocal cellular mechanisms of human NSCs and BECs. This review will cover the current understanding of mammalian NVN biology, the effects of endothelial cell-derived signals on NSC fate, and the models developed to study the interactions between NSCs and BECs.
哺乳动物神经干细胞(NSCs)在成年期具有自我更新和分化的能力,这使其成为研究神经发生的理想对象,也是神经退行性疾病治疗的有吸引力的候选者。在成年哺乳动物大脑中,神经干细胞维持在神经血管微环境(NVN)中,在那里它们位于特殊血管附近,这表明脑内皮细胞(BECs)是神经干细胞命运的主要调控者。然而,目前关于哺乳动物神经血管微环境的大部分知识都是从非人类研究中推断出来的。为了规避研究中的挑战,已经开发了一些模型来更好地理解人类神经干细胞和脑内皮细胞之间的相互细胞机制。这篇综述将涵盖目前对哺乳动物神经血管微环境生物学的理解、内皮细胞衍生信号对神经干细胞命运的影响,以及为研究神经干细胞和脑内皮细胞之间的相互作用而开发的模型。
BMC Dev Biol. 2010-1-14
Methods Mol Biol. 2019
Adv Healthc Mater. 2014-2-12
Curr Top Dev Biol. 2021
Cells. 2022-9-26
Front Med (Lausanne). 2021-9-13
Adv Healthc Mater. 2020-8
Adv Sci (Weinh). 2019-8-12
J Transl Med. 2019-7-15
Proc Natl Acad Sci U S A. 2019-3-28
Mater Sci Eng C Mater Biol Appl. 2019-1-22
Front Neuroanat. 2018-12-6