Courouble Valentine V, Dey Sanjay Kumar, Yadav Ruchi, Timm Jennifer, Harrison Jerry Joe E K, Ruiz Francesc X, Arnold Eddy, Griffin Patrick R
Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA.
Center for Advanced Biotechnology & Medicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
bioRxiv. 2021 Mar 6:2021.03.06.434214. doi: 10.1101/2021.03.06.434214.
Coronavirus (CoV) non-structural proteins (nsps) assemble to form the replication-transcription complex (RTC) responsible for viral RNA synthesis. nsp7 and nsp8 are important cofactors of the RTC, as they interact and regulate the activity of RNA-dependent RNA polymerase (RdRp) and other nsps. To date, no structure of full-length SARS-CoV-2 nsp7:nsp8 complex has been published. Current understanding of this complex is based on structures from truncated constructs or with missing electron densities and complexes from related CoV species with which SARS-CoV-2 nsp7 and nsp8 share upwards of 90% sequence identity. Despite available structures being solved using crystallography and cryo-EM representing detailed snapshots of the nsp7:nsp8 complex, it is evident that the complex has a high degree of structural plasticity. However, relatively little is known about the conformational dynamics of the complex and how it assembles to interact with other nsps. Here, the solution-based structural proteomic techniques, hydrogen-deuterium exchange mass spectrometry (HDX-MS) and crosslinking mass spectrometry (XL-MS), illuminate the structural dynamics of the SARS-CoV-2 full-length nsp7:nsp8 complex. The results presented from the two techniques are complementary and validate the interaction surfaces identified from the published three-dimensional heterotetrameric crystal structure of SARS-CoV-2 truncated nsp7:nsp8 complex. Furthermore, mapping of XL-MS data onto higher order complexes suggests that SARS-CoV-2 nsp7 and nsp8 do not assemble into a hexadecameric structure as implied by the SARS-CoV full-length nsp7:nsp8 crystal structure. Instead our results suggest that the nsp7:nsp8 heterotetramer can dissociate into a stable dimeric unit that might bind to nsp12 in the RTC without altering nsp7-nsp8 interactions.
冠状病毒(CoV)的非结构蛋白(nsps)组装形成负责病毒RNA合成的复制转录复合体(RTC)。nsp7和nsp8是RTC的重要辅助因子,因为它们相互作用并调节RNA依赖性RNA聚合酶(RdRp)和其他nsps的活性。迄今为止,尚未发表全长严重急性呼吸综合征冠状病毒2(SARS-CoV-2)nsp7:nsp8复合体的结构。目前对该复合体的了解基于截短构建体的结构、缺少电子密度的结构以及来自相关冠状病毒物种的复合体,SARS-CoV-2的nsp7和nsp8与这些相关物种的序列同一性超过90%。尽管已通过晶体学和冷冻电镜解析了可用结构,呈现了nsp7:nsp8复合体的详细快照,但很明显该复合体具有高度的结构可塑性。然而,关于该复合体的构象动力学以及它如何组装以与其他nsps相互作用,人们了解得相对较少。在这里,基于溶液的结构蛋白质组学技术——氢氘交换质谱(HDX-MS)和交联质谱(XL-MS),阐明了SARS-CoV-2全长nsp7:nsp8复合体的结构动力学。这两种技术呈现的结果是互补的,并验证了从已发表的SARS-CoV-2截短nsp7:nsp8复合体三维异源四聚体晶体结构中确定的相互作用表面。此外,将XL-MS数据映射到高阶复合体上表明,SARS-CoV-2的nsp7和nsp8不会组装成如SARS-CoV全长nsp7:nsp8晶体结构所暗示的十六聚体结构。相反,我们的结果表明,nsp7:nsp8异源四聚体可以解离成一个稳定的二聚体单元,该单元可能在RTC中与nsp12结合,而不会改变nsp7-nsp8相互作用。