Suppr超能文献

血液转录组学预测肺纤维化的进展及相关自然杀伤细胞。

Blood Transcriptomics Predicts Progression of Pulmonary Fibrosis and Associated Natural Killer Cells.

机构信息

Division of Pulmonary and Critical Care Medicine, The University of Virginia, Charlottesville, Virginia.

Division of Pulmonary, Critical Care, and Sleep Medicine, The University of California at Davis, Sacramento, California.

出版信息

Am J Respir Crit Care Med. 2021 Jul 15;204(2):197-208. doi: 10.1164/rccm.202008-3093OC.

Abstract

Disease activity in idiopathic pulmonary fibrosis (IPF) remains highly variable, poorly understood, and difficult to predict. To identify a predictor using short-term longitudinal changes in gene expression that forecasts future FVC decline and to characterize involved pathways and cell types. Seventy-four patients from COMET (Correlating Outcomes with Biochemical Markers to Estimate Time-Progression in IPF) cohort were dichotomized as progressors (≥10% FVC decline) or stable. Blood gene-expression changes within individuals were calculated between baseline and 4 months and regressed with future FVC status, allowing determination of expression variations, sample size, and statistical power. Pathway analyses were conducted to predict downstream effects and identify new targets. An FVC predictor for progression was constructed in COMET and validated using independent cohorts. Peripheral blood mononuclear single-cell RNA-sequencing data from healthy control subjects were used as references to characterize cell type compositions from bulk peripheral blood mononuclear RNA-sequencing data that were associated with FVC decline. The longitudinal model reduced gene-expression variations within stable and progressor groups, resulting in increased statistical power when compared with a cross-sectional model. The FVC predictor for progression anticipated patients with future FVC decline with 78% sensitivity and 86% specificity across independent IPF cohorts. Pattern recognition receptor pathways and mTOR pathways were downregulated and upregulated, respectively. Cellular deconvolution using single-cell RNA-sequencing data identified natural killer cells as significantly correlated with progression. Serial transcriptomic change predicts future FVC decline. An analysis of cell types involved in the progressor signature supports the novel involvement of natural killer cells in IPF progression.

摘要

特发性肺纤维化(IPF)的疾病活动仍然高度可变,难以理解且难以预测。本研究旨在通过基因表达的短期纵向变化来识别预测因素,以预测未来 FVC 的下降,并对相关途径和细胞类型进行特征分析。将来自 COMET(用生物标志物相关结果来预测特发性肺纤维化的时间进展)队列的 74 名患者分为进展者(FVC 下降≥10%)或稳定者。在个体中计算了基线和 4 个月之间的血液基因表达变化,并与未来的 FVC 状态进行回归,从而确定表达变化、样本量和统计能力。进行途径分析以预测下游效应并确定新的靶点。在 COMET 中构建了用于进展的 FVC 预测因子,并使用独立队列进行验证。使用健康对照的外周血单核细胞单细胞 RNA 测序数据作为参考,对与 FVC 下降相关的来自批量外周血单核细胞 RNA 测序数据的细胞类型组成进行特征分析。纵向模型减少了稳定组和进展组内的基因表达变化,与横断面模型相比,统计能力提高。该进展的 FVC 预测因子在独立的 IPF 队列中,对未来 FVC 下降的患者具有 78%的敏感性和 86%的特异性。模式识别受体途径和 mTOR 途径分别下调和上调。使用单细胞 RNA 测序数据进行的细胞去卷积鉴定出自然杀伤细胞与进展显著相关。连续的转录组变化可预测未来的 FVC 下降。对进展特征所涉及的细胞类型的分析支持自然杀伤细胞在 IPF 进展中的新作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验