Grupo de Investigación en Remediación Ambiental y Biocatálisis, Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
Chemical and Process Engineering, University of Surrey, Guildford GU27XH, United Kingdom.
Ultrason Sonochem. 2021 May;73:105500. doi: 10.1016/j.ultsonch.2021.105500. Epub 2021 Feb 20.
Degradation of seven relevant pharmaceuticals with different chemical structures and properties: acetaminophen (ACE), cloxacillin (CXL), diclofenac (DCF), naproxen (NPX), piroxicam (PXC), sulfacetamide (SAM) and cefadroxil (CDX), in distilled water and mineral water by ultrasound was studied herein. Firstly, proper conditions of frequency and acoustic power were determined based on the degradation ability of the system and the accumulation of sonogenerated hydrogen peroxide (24.4 W and 375 kHz were found as the suitable conditions for the sonochemical treatment of the pharmaceuticals). Under such conditions, the pharmaceuticals degradation order in distilled water was: PXC > DCF ~ NPX > CXL > ACE > SAM > CDX. In fact, the initial degradation rate showed a good correlation with the Log P parameter, most hydrophobic compounds were eliminated faster than the hydrophilic ones. Interestingly, in mineral water, the degradation of those hydrophilic compounds (i.e., ACE, SAM and CDX) was accelerated, which was attributed to the presence of bicarbonate ions. Afterwards, mineral water containing six different initial concentrations (i.e., 0.331, 0.662, 3.31, 16.55, 33.1, and 331 µM) of selected pharmaceuticals was sonicated, the lowest concentration (0.331 µM) always gave the highest degradation of the pollutants. This result highlights the great ability of the sonochemical process to treat bicarbonate-rich waters containing pollutants at trace levels, as pharmaceuticals. Finally, the addition of ferrous ions to the sonochemical system to generate a sono-Fenton process resulted in an acceleration of degradation in distilled water but not in mineral water. This was attributed to the scavenging of sonogenerated HO• by bicarbonate anion, which decreases HO accumulation, thus limiting the Fenton reaction.
本文研究了不同化学结构和性质的七种相关药物(对乙酰氨基酚(ACE)、氯唑西林(CXL)、双氯芬酸(DCF)、萘普生(NPX)、吡罗昔康(PXC)、磺胺醋酰钠(SAM)和头孢羟氨苄(CDX))在蒸馏水和矿泉水中的超声降解情况。首先,根据系统的降解能力和超声生成的过氧化氢的积累,确定了适当的频率和声功率条件(发现 24.4 W 和 375 kHz 是药物声化学处理的合适条件)。在这些条件下,蒸馏水中药物的降解顺序为:PXC > DCF~NPX > CXL > ACE > SAM > CDX。事实上,初始降解速率与 Log P 参数有很好的相关性,疏水性化合物的初始降解速率比亲水性化合物的初始降解速率快。有趣的是,在矿泉水中,那些亲水性化合物(即 ACE、SAM 和 CDX)的降解速度加快,这归因于碳酸氢根离子的存在。随后,超声处理含有六种不同初始浓度(即 0.331、0.662、3.31、16.55、33.1 和 331 μM)选定药物的矿泉水中,最低浓度(0.331 μM)始终能使污染物得到最高的降解。这一结果突出了声化学工艺处理痕量污染物的富碳酸氢盐水的巨大能力,如药物。最后,向声化学体系中添加亚铁离子以产生声芬顿过程,导致在蒸馏水中降解加速,但在矿泉水中没有加速。这归因于碳酸氢根阴离子对超声生成的 HO•的清除,从而减少了 HO 的积累,从而限制了芬顿反应。