Suppr超能文献

自学视频目标分割

Self-Teaching Video Object Segmentation.

作者信息

Zhou Chuanwei, Xu Chunyan, Cui Zhen, Zhang Tong, Yang Jian

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Apr;33(4):1623-1637. doi: 10.1109/TNNLS.2020.3043099. Epub 2022 Apr 4.

Abstract

Video object segmentation (VOS) is one of the most fundamental tasks for numerous sequent video applications. The crucial issue of online VOS is the drifting of segmenter when incrementally updated on continuous video frames under unconfident supervision constraints. In this work, we propose a self-teaching VOS (ST-VOS) method to make segmenter to learn online adaptation confidently as much as possible. In the segmenter learning at each time slice, the segment hypothesis and segmenter update are enclosed into a self-looping optimization circle such that they can be mutually improved for each other. To reduce error accumulation of the self-looping process, we specifically introduce a metalearning strategy to learn how to do this optimization within only a few iteration steps. To this end, the learning rates of segmenter are adaptively derived through metaoptimization in the channel space of convolutional kernels. Furthermore, to better launch the self-looping process, we calculate an initial mask map through part detectors and motion flow to well-establish a foundation for subsequent refinement, which could result in the robustness of the segmenter update. Extensive experiments demonstrate that this ST idea can boost the performance of baselines, and in the meantime, our ST-VOS achieves encouraging performance on the DAVIS16, Youtube-objects, DAVIS17, and SegTrackV2 data sets, where, in particular, the accuracy of 75.7% in J-mean metric is obtained on the multi-instance DAVIS17 data set.

摘要

视频对象分割(VOS)是众多后续视频应用中最基本的任务之一。在线VOS的关键问题是,在缺乏可靠监督约束的情况下,分割器在连续视频帧上进行增量更新时会出现漂移。在这项工作中,我们提出了一种自学习VOS(ST-VOS)方法,以使分割器尽可能自信地进行在线自适应学习。在每个时间片的分割器学习中,分割假设和分割器更新被纳入一个自循环优化圈,这样它们可以相互促进。为了减少自循环过程中的误差积累,我们专门引入了一种元学习策略,以学习如何在仅几个迭代步骤内进行这种优化。为此,通过在卷积核的通道空间中进行元优化,自适应地导出分割器的学习率。此外,为了更好地启动自循环过程,我们通过部分检测器和运动流计算初始掩码图,为后续的细化建立良好的基础,这可以提高分割器更新的鲁棒性。大量实验表明,这种ST思想可以提高基线的性能,同时,我们的ST-VOS在DAVIS16、Youtube-objects、DAVIS17和SegTrackV2数据集上取得了令人鼓舞的性能,特别是在多实例DAVIS17数据集上,J-mean指标的准确率达到了75.7%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验