Suppr超能文献

Normalization of underwater laser-induced breakdown spectroscopy using acoustic signals measured by a hydrophone.

作者信息

Huang Fuzhen, Tian Ye, Li Ying, Ye Wangquan, Lu Yuan, Guo Jinjia, Zheng Ronger

出版信息

Appl Opt. 2021 Feb 20;60(6):1595-1602. doi: 10.1364/AO.413853.

Abstract

Laser-induced breakdown spectroscopy (LIBS) signals in water always suffer strong pulse-to-pulse fluctuations that result in poor stability of the spectrum. In this work, a spectrum normalization method based on acoustic signals measured by a hydrophone immersed in water was developed and compared with laser energy normalization. The characteristics of the acoustic signals were studied first, and the correlations between the acoustic signals and LIBS spectra were analyzed. It showed that the spectral line intensity has a better linear relationship with the acoustic energy than with the laser energy. Consequently, the acoustic normalization exhibited better performance on the reduction of LIBS spectral fluctuation versus laser energy normalization. Calibration curves of Mn, Sr, and Li were then built to assess the analytical performance of the proposed acoustic normalization method. Compared with the original spectral data, the average RSD_C values of all analyte elements were significantly reduced from 5.00% to 3.18%, and the average RSD_P values were reduced from 5.09% to 3.28%, by using the acoustic normalization method. These results suggest that the stability of underwater LIBS can be clearly improved by using acoustic signals for normalization, and acoustic normalization works more efficiently than laser energy normalization. This work provides a simple and cost-effective external acoustic normalization method for underwater LIBS applications.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验