Suppr超能文献

Impact of microvibration on the optical performance of an airborne camera.

作者信息

Lin Jieqiong, Zhou Yan, Wang Haitao, Gu Yan, Gao Minghui, Guo Xin, Xu Haibo

出版信息

Appl Opt. 2021 Feb 10;60(5):1283-1293. doi: 10.1364/AO.411299.

Abstract

Aiming to investigate the connection between camera structure and optical systems, a comprehensive analysis needs to be performed for the airborne camera. An integrated analysis method was proposed to design and analyze optical and mechanical structures. Based on the designed small airborne camera, the impact of microvibration on the optical performance of the airborne camera was studied by integrated optomechanical analysis. In addition, the change of optical surface accuracy was analyzed. First, static and dynamic analysis of the designed airborne camera was performed to verify the stability of the camera structure and obtain the data for integrated optomechanical analysis. Then, a calculation method for rigid body displacement was proposed, and the impact of rigid body displacements on the optical system was analyzed. To evaluate the change of surface accuracy, the parameters root mean square (RMS) and peak to valley (PV) were calculated by fitting the surface distortion data. Based on the Zernike polynomial coefficients, the response of the optical system was calculated and analyzed utilizing ZEMAX to analyze the impact of microvibration on the optical performance of the airborne camera. The analysis results show that microvibration has no significant impact on optical performance of the designed small airborne camera. Finally, the analysis results were verified through experiments.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验