Suppr超能文献

控制和稳定地在结晶二维蛋白质阵列上形成多种无机纳米晶体的图案。

Controlled and Stable Patterning of Diverse Inorganic Nanocrystals on Crystalline Two-Dimensional Protein Arrays.

机构信息

Department of BioSciences, Rice University, Houston, Texas 77005, United States.

出版信息

Biochemistry. 2021 Apr 6;60(13):1063-1074. doi: 10.1021/acs.biochem.1c00032. Epub 2021 Mar 10.

Abstract

Controlled patterning of nanoparticles on bioassemblies enables synthesis of complex materials for applications in optics, nanoelectronics, and sensing. Biomolecular self-assembly offers molecular control for engineering patterned nanomaterials, but current approaches have been limited in their ability to combine high nanoparticle coverage with generality that enables incorporation of multiple nanoparticle types. Here, we synthesize photonic materials on crystalline two-dimensional (2D) protein sheets using orthogonal bioconjugation reactions, organizing quantum dots (QDs), gold nanoparticles (AuNPs), and upconverting nanoparticles along the surface-layer (S-layer) protein SbsB from the extremophile . We use electron and optical microscopy to show that isopeptide bond-forming SpyCatcher and SnoopCatcher systems enable the simultaneous and controlled conjugation of multiple types of nanoparticles (NPs) at high densities along the SbsB sheets. These NP conjugation reactions are orthogonal to each other and to Au-thiol bond formation, allowing tailorable nanoparticle combinations at sufficient labeling efficiencies to permit optical interactions between nanoparticles. Fluorescence lifetime imaging of SbsB sheets conjugated to QDs and AuNPs at distinct attachment sites shows spatially heterogeneous QD emission, with shorter radiative decays and brighter fluorescence arising from plasmonic enhancement at short interparticle distances. This specific, stable, and efficient conjugation of NPs to 2D protein sheets enables the exploration of interactions between pairs of nanoparticles at defined distances for the engineering of protein-based photonic nanomaterials.

摘要

在生物组装体上对纳米粒子进行可控图案化,可合成用于光学、纳米电子学和传感等领域的复杂材料。生物分子自组装为工程化图案化纳米材料提供了分子控制,但目前的方法在将高纳米粒子覆盖率与通用性相结合以纳入多种纳米粒子类型方面能力有限。在这里,我们使用正交生物共轭反应在结晶二维(2D)蛋白片上合成光子材料,沿着来自极端微生物的表面层(S-layer)蛋白 SbsB 组织量子点(QDs)、金纳米粒子(AuNPs)和上转换纳米粒子。我们使用电子和光学显微镜表明,异肽键形成的 SpyCatcher 和 SnoopCatcher 系统能够在 SbsB 片上以高密度同时且可控地共轭多种类型的纳米粒子(NPs)。这些 NP 共轭反应彼此正交,与 Au-硫醇键形成正交,允许在足够的标记效率下进行可定制的纳米粒子组合,以允许纳米粒子之间的光学相互作用。在不同附着点将 QD 和 AuNPs 共轭到 SbsB 片上的荧光寿命成像显示 QD 发射具有空间异质性,由于短距离处的等离子体增强,辐射衰减较短,荧光更亮。这种特定、稳定且高效的 NP 与 2D 蛋白片的共轭可用于探索定义距离处的纳米粒子对之间的相互作用,从而用于工程化基于蛋白质的光子纳米材料。

相似文献

本文引用的文献

1
Giant nonlinear optical responses from photon-avalanching nanoparticles.光子雪崩纳米粒子的巨大非线性光学响应。
Nature. 2021 Jan;589(7841):230-235. doi: 10.1038/s41586-020-03092-9. Epub 2021 Jan 13.
2
Enzyme-Directed Functionalization of Designed, Two-Dimensional Protein Lattices.酶指导的设计二维蛋白质晶格的功能化。
Biochemistry. 2021 Apr 6;60(13):1050-1062. doi: 10.1021/acs.biochem.0c00363. Epub 2020 Aug 3.
6
Approaching infinite affinity through engineering of peptide-protein interaction.通过肽-蛋白质相互作用工程实现接近无限亲和力。
Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):26523-26533. doi: 10.1073/pnas.1909653116. Epub 2019 Dec 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验