Suppr超能文献

机器学习在 ICU 机械通气患者拔管成功预测中的应用:一项回顾性观察研究。

Machine Learning for Prediction of Successful Extubation of Mechanical Ventilated Patients in an Intensive Care Unit: A Retrospective Observational Study.

机构信息

Department of Emergency and Critical Care Medicine, Nippon Medical School.

Department of Industrial Administration, Tokyo University of Science.

出版信息

J Nippon Med Sch. 2021 Nov 17;88(5):408-417. doi: 10.1272/jnms.JNMS.2021_88-508. Epub 2021 Mar 9.

Abstract

BACKGROUND

Ventilator weaning protocols are commonly implemented for patients receiving mechanical ventilation. However, despite such protocols, the rate of extubation failure remains high. This study analyzed the usefulness and accuracy of machine learning in predicting extubation success.

METHODS

We retrospectively evaluated data from patients who underwent intubation for respiratory failure and received mechanical ventilation in an intensive care unit (ICU). Information on 57 features, including patient demographics, vital signs, laboratory data, and ventilator data, were extracted. Extubation failure was defined as re-intubation within 72 hours of extubation. For supervised learning, data were labeled as intubation-required or not. We used three learning algorithms (Random Forest, XGBoost, and LightGBM) to predict successful extubation. We also analyzed important features and evaluated the area under curve (AUC) and prediction metrics.

RESULTS

Overall, 13 of the 117 included patients required re-intubation. LightGBM had the highest AUC (0.950), followed by XGBoost (0.946) and Random Forest (0.930). The accuracy, precision, and recall performance were 0.897, 0.910, and 0.909 for Random Forest; 0.910, 0.912, and 0.931 for XGBoost; and 0.927, 0.915, and 0.960 for LightGBM, respectively. The most important feature was duration of mechanical ventilation, followed by fraction of inspired oxygen, positive end-expiratory pressure, maximum and mean airway pressures, and Glasgow Coma Scale.

CONCLUSIONS

Machine learning predicted successful extubation of ICU patients on mechanical ventilation. LightGBM had the best overall performance. Duration of mechanical ventilation was the most important feature in all models.

摘要

背景

通气机撤机方案常用于接受机械通气的患者。然而,尽管有这些方案,拔管失败的发生率仍然很高。本研究分析了机器学习在预测拔管成功中的有用性和准确性。

方法

我们回顾性评估了因呼吸衰竭行气管插管并在重症监护病房(ICU)接受机械通气的患者的数据。提取了 57 项特征的信息,包括患者人口统计学、生命体征、实验室数据和通气机数据。拔管失败定义为拔管后 72 小时内重新插管。对于有监督学习,数据标记为需要或不需要插管。我们使用了三种学习算法(随机森林、XGBoost 和 LightGBM)来预测成功拔管。我们还分析了重要特征,并评估了曲线下面积(AUC)和预测指标。

结果

总共 117 名纳入患者中有 13 名需要重新插管。LightGBM 的 AUC(0.950)最高,其次是 XGBoost(0.946)和随机森林(0.930)。随机森林的准确率、精确度和召回率分别为 0.897、0.910 和 0.909;XGBoost 为 0.910、0.912 和 0.931;LightGBM 为 0.927、0.915 和 0.960。最重要的特征是机械通气时间,其次是吸入氧分数、呼气末正压、最大和平均气道压力以及格拉斯哥昏迷评分。

结论

机器学习预测了 ICU 机械通气患者的成功拔管。LightGBM 的总体性能最佳。机械通气时间是所有模型中最重要的特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验