Nature. 2021 Mar;591(7849):220-224. doi: 10.1038/s41586-021-03256-1. Epub 2021 Mar 10.
The Glashow resonance describes the resonant formation of a W boson during the interaction of a high-energy electron antineutrino with an electron, peaking at an antineutrino energy of 6.3 petaelectronvolts (PeV) in the rest frame of the electron. Whereas this energy scale is out of reach for currently operating and future planned particle accelerators, natural astrophysical phenomena are expected to produce antineutrinos with energies beyond the PeV scale. Here we report the detection by the IceCube neutrino observatory of a cascade of high-energy particles (a particle shower) consistent with being created at the Glashow resonance. A shower with an energy of 6.05 ± 0.72 PeV (determined from Cherenkov radiation in the Antarctic Ice Sheet) was measured. Features consistent with the production of secondary muons in the particle shower indicate the hadronic decay of a resonant W boson, confirm that the source is astrophysical and provide improved directional localization. The evidence of the Glashow resonance suggests the presence of electron antineutrinos in the astrophysical flux, while also providing further validation of the standard model of particle physics. Its unique signature indicates a method of distinguishing neutrinos from antineutrinos, thus providing a way to identify astronomical accelerators that produce neutrinos via hadronuclear or photohadronic interactions, with or without strong magnetic fields. As such, knowledge of both the flavour (that is, electron, muon or tau neutrinos) and charge (neutrino or antineutrino) will facilitate the advancement of neutrino astronomy.
格拉肖共振描述了高能电子反中微子与电子相互作用时 W 玻色子的共振形成,在电子的静止系中,其能量峰值出现在 6.3 拍电子伏特(PeV)。虽然这个能量尺度超出了当前运行和未来计划的粒子加速器的范围,但预计自然天体物理现象会产生能量超过 PeV 尺度的反中微子。在这里,我们报告了由冰立方中微子观测站探测到的一系列高能粒子(粒子簇射)的结果,这些粒子簇射与格拉肖共振一致。一个能量为 6.05±0.72PeV 的簇射(通过南极冰盖中的切伦科夫辐射确定)被测量到。簇射中与次级缪子产生一致的特征表明共振 W 玻色子的强子衰变,证实了源是天体物理的,并提供了改进的方向定位。格拉肖共振的证据表明,在天体物理通量中存在电子反中微子,同时也为粒子物理标准模型提供了进一步的验证。其独特的特征表明了一种区分中微子和反中微子的方法,从而提供了一种识别通过强子核或光强子相互作用产生中微子的天体物理加速器的方法,无论是否存在强磁场。因此,了解味(即电子、缪或陶中微子)和电荷(中微子或反中微子)将有助于推进中微子天文学的发展。