Suppr超能文献

关于放射生物学建模中平均线性能量传递的计算。

On calculation of the average linear energy transfer for radiobiological modelling.

作者信息

Vassiliev Oleg N

机构信息

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America.

出版信息

Biomed Phys Eng Express. 2021 Jan;7(1). doi: 10.1088/2057-1976/abc967. Epub 2020 Nov 20.

Abstract

Applying the concept of linear energy transfer (LET) to modeling of biological effects of charged particles usually involves calculation of the average LET. To calculate this, the energy distribution of particles is characterized by either the source spectrum or fluence spectrum. Also, the average can be frequency-or dose-weighted. This makes four methods of calculating the average LET, each producing a different number. The purpose of this note is to describe which of these four methods is best suited for radiobiological modelling. We focused on data for photons (x-rays and gamma radiation) because in this case differences in the four averaging methods are most pronounced. However, our conclusions are equally applicable to photons and hadrons. We based our arguments on recently emerged Monte Carlo data that fully account for transport of electrons down to very low energies comparable to the ionization potential of water. We concluded that the frequency average LET calculated using the fluence spectrum has better predictive power than does that calculated using any of the other three options. This optimal method is not new but is different from those currently dominating research in this area.

摘要

将线能量转移(LET)概念应用于带电粒子生物效应建模通常涉及平均LET的计算。为了进行此计算,粒子的能量分布可通过源谱或注量谱来表征。此外,平均值可以是频率加权或剂量加权的。这就产生了四种计算平均LET的方法,每种方法得出的数值都不同。本说明的目的是描述这四种方法中哪一种最适合放射生物学建模。我们重点关注光子(X射线和γ辐射)的数据,因为在这种情况下,四种平均方法的差异最为明显。然而,我们的结论同样适用于光子和强子。我们的论点基于最近出现的蒙特卡罗数据,这些数据充分考虑了电子传输至与水的电离势相当的极低能量的情况。我们得出结论,使用注量谱计算的频率平均LET比使用其他三种方法计算的具有更好的预测能力。这种最佳方法并非新方法,但与目前该领域主导研究中使用的方法不同。

相似文献

本文引用的文献

10
Formulation of the multi-hit model with a non-Poisson distribution of hits.提出具有非泊松分布的多击模型。
Int J Radiat Oncol Biol Phys. 2012 Jul 15;83(4):1311-6. doi: 10.1016/j.ijrobp.2011.09.044. Epub 2012 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验