Pavanello Chiara, Parolini Marina, Alberti Antonia, Carenini Michele, Maino Paolo, Mombelli Giuliana, Pazzucconi Franco, Origgi Gianni, Orsi Federica, Trivella Maria Giovanna, Calabresi Laura, De Maria Renata
Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro E. Grossi Paoletti, Università degli Studi di Milan, Milan, Italy.
Dipartimento Cardiotoracovascolare, Istituto di Fisiologia Clinica del CNR, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.
Front Big Data. 2018 Oct 2;1:4. doi: 10.3389/fdata.2018.00004. eCollection 2018.
SKIM LEAN aims at exploiting Electronic Health Records (EHRs) to integrate knowledge derived from routine laboratory tests with background analysis of clinical databases, for the identification and early referral to specialist care, where appropriate, of patients with hypercholesterolemia, who may be inadequately controlled according to their cardiovascular (CV) risk level. SKIM LEAN addresses gaps in care that may occur through the lack of coordination between primary and specialist care, incomplete adherence to clinical guidelines, or poor patient's compliance to the physician's prescriptions because of comorbidities or drug side effects. Key project objectives include: (1) improved health professionals' competence and patient empowerment through a two-tiered educational website for general practitioners (GPs) and patients, and (2) implementation of a hospital-community shared care pathway to increase the proportion of patients at high/very-high CV risk (Familial Hypercholesterolemia, previous CV events) who achieve target LDL cholesterol (LDL-C) levels. Thanks to a close collaboration between clinical and information technology partners, SKIM LEAN will fully exploit the value of big data deriving from EHRs, and filter such knowledge using clinically-derived algorithms to risk-stratify patients. Alerts for GPs will be generated with interpreted test results. GPs will be able to refer patients with uncontrolled LDL-C within the shared pathway to the lipid or secondary prevention outpatient clinics of NIG hospital. Metrics to verify the project achievements include web-site visits, the number of alerts generated, numbers of patients referred by GPs, the proportion of secondary prevention patients who achieve LDL-C <100 mg/dl or a >50% decrease from baseline.
SKIM LEAN旨在利用电子健康记录(EHR),将常规实验室检查得出的知识与临床数据库的背景分析相结合,以便在适当情况下识别高胆固醇血症患者,并将其尽早转诊至专科护理,这些患者根据其心血管(CV)风险水平可能未得到充分控制。SKIM LEAN解决了由于初级护理和专科护理之间缺乏协调、未完全遵守临床指南或因合并症或药物副作用导致患者对医生处方依从性差而可能出现的护理差距。关键项目目标包括:(1)通过为全科医生(GP)和患者提供的两层教育网站提高医疗专业人员的能力并增强患者的自主权;(2)实施医院-社区共享护理路径,以提高心血管风险高/非常高(家族性高胆固醇血症、既往心血管事件)且达到低密度脂蛋白胆固醇(LDL-C)目标水平的患者比例。由于临床和信息技术合作伙伴之间的密切合作,SKIM LEAN将充分利用EHR产生的大数据价值,并使用临床衍生算法对这些知识进行筛选,以对患者进行风险分层。将通过解读后的检测结果为全科医生生成警报。全科医生将能够在共享路径内将LDL-C未得到控制的患者转诊至NIG医院的脂质或二级预防门诊。验证项目成果的指标包括网站访问量、生成的警报数量、全科医生转诊的患者数量、达到LDL-C<100mg/dl或较基线降低>50%的二级预防患者比例。