文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

沉默的冷觉神经元有助于神经性疼痛的冷感觉过敏。

Silent cold-sensing neurons contribute to cold allodynia in neuropathic pain.

机构信息

Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.

出版信息

Brain. 2021 Jul 28;144(6):1711-1726. doi: 10.1093/brain/awab086.


DOI:10.1093/brain/awab086
PMID:33693512
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8320254/
Abstract

Patients with neuropathic pain often experience innocuous cooling as excruciating pain. The cell and molecular basis of this cold allodynia is little understood. We used in vivo calcium imaging of sensory ganglia to investigate how the activity of peripheral cold-sensing neurons was altered in three mouse models of neuropathic pain: oxaliplatin-induced neuropathy, partial sciatic nerve ligation, and ciguatera poisoning. In control mice, cold-sensing neurons were few in number and small in size. In neuropathic animals with cold allodynia, a set of normally silent large diameter neurons became sensitive to cooling. Many of these silent cold-sensing neurons responded to noxious mechanical stimuli and expressed the nociceptor markers Nav1.8 and CGRPα. Ablating neurons expressing Nav1.8 resulted in diminished cold allodynia. The silent cold-sensing neurons could also be activated by cooling in control mice through blockade of Kv1 voltage-gated potassium channels. Thus, silent cold-sensing neurons are unmasked in diverse neuropathic pain states and cold allodynia results from peripheral sensitization caused by altered nociceptor excitability.

摘要

患有神经病理性疼痛的患者经常会感到无害的冷却也会引起剧痛。这种冷感觉过敏的细胞和分子基础知之甚少。我们使用感觉神经节的体内钙成像来研究三种神经病理性疼痛模型(奥沙利铂诱导的神经病、部分坐骨神经结扎和雪卡毒素中毒)中外周冷感觉神经元的活性如何发生改变。在对照小鼠中,冷感觉神经元数量少且体积小。在有冷感觉过敏的神经病理性动物中,一组通常沉默的大直径神经元对冷却变得敏感。这些沉默的冷感觉神经元中的许多对有害的机械刺激有反应,并表达伤害感受器标记物 Nav1.8 和 CGRPα。Nav1.8 表达神经元的消融导致冷感觉过敏减轻。在对照小鼠中,通过阻断 Kv1 电压门控钾通道,也可以激活沉默的冷感觉神经元。因此,在各种神经病理性疼痛状态下,沉默的冷感觉神经元被揭示出来,冷感觉过敏是由伤害感受器兴奋性改变引起的外周致敏引起的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/0c8301cd7e54/awab086f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/a4a6706697a6/awab086f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/289abc86c23e/awab086f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/14f1fcbcc55b/awab086f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/d6a2462c79f6/awab086f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/70b784d04547/awab086f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/70fc6dac9869/awab086f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/a89cf827a134/awab086f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/0c8301cd7e54/awab086f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/a4a6706697a6/awab086f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/289abc86c23e/awab086f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/14f1fcbcc55b/awab086f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/d6a2462c79f6/awab086f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/70b784d04547/awab086f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/70fc6dac9869/awab086f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/a89cf827a134/awab086f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3e/8320254/0c8301cd7e54/awab086f8.jpg

相似文献

[1]
Silent cold-sensing neurons contribute to cold allodynia in neuropathic pain.

Brain. 2021-7-28

[2]
Role of the Excitability Brake Potassium Current I in Cold Allodynia Induced by Chronic Peripheral Nerve Injury.

J Neurosci. 2017-3-22

[3]
The Nav1.9 channel is a key determinant of cold pain sensation and cold allodynia.

Cell Rep. 2015-5-7

[4]
Transient receptor potential melastatin 8 contributes to the interleukin-33-mediated cold allodynia in a mouse model of neuropathic pain.

Pain. 2025-2-1

[5]
An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways.

Pain. 2013-5-24

[6]
Pregabalin Silences Oxaliplatin-Activated Sensory Neurons to Relieve Cold Allodynia.

eNeuro. 2023-2

[7]
Pain without nociceptors? Nav1.7-independent pain mechanisms.

Cell Rep. 2014-1-30

[8]
Optogenetic Inhibition of CGRPα Sensory Neurons Reveals Their Distinct Roles in Neuropathic and Incisional Pain.

J Neurosci. 2018-6-20

[9]
KCNQ channels in nociceptive cold-sensing trigeminal ganglion neurons as therapeutic targets for treating orofacial cold hyperalgesia.

Mol Pain. 2015-7-31

[10]
Distinct calcitonin gene-related peptide expression pattern in primary afferents contribute to different neuropathic symptoms following chronic constriction or crush injuries to the rat sciatic nerve.

Mol Pain. 2016

引用本文的文献

[1]
Limited efficacy of cold and heat therapy as adjunctive treatments for local and functional outcomes of Bothrops atrox snakebite envenomation: A randomized clinical trial.

PLoS Negl Trop Dis. 2025-8-14

[2]
Pain persists in mice lacking both Substance P and CGRPα signaling.

Elife. 2025-3-18

[3]
TET1 participates in oxaliplatin-induced neuropathic pain by regulating microRNA-30b/Nav1.6.

J Biol Chem. 2025-3

[4]
Targeting Na1.7 and Na1.8 with a PIKfyve inhibitor to reverse inflammatory and neuropathic pain.

Neurobiol Pain. 2024-11-29

[5]
A functional unbalance of TRPM8 and Kv1 channels underlies orofacial cold allodynia induced by peripheral nerve damage.

Front Pharmacol. 2024-12-5

[6]
Novel therapies for cancer-induced bone pain.

Neurobiol Pain. 2024-9-26

[7]
Pregnancy ameliorates neuropathic pain through suppression of microglia and upregulation of the δ-opioid receptor in the anterior cingulate cortex in late-pregnant mice.

J Anesth. 2024-12

[8]
Ion channels of cold transduction and transmission.

J Gen Physiol. 2024-10-7

[9]
Role of Palliative Care in the Supportive Management of AL Amyloidosis-A Review.

J Clin Med. 2024-3-29

[10]
A mouse DRG genetic toolkit reveals morphological and physiological diversity of somatosensory neuron subtypes.

Cell. 2024-3-14

本文引用的文献

[1]
Somatosensation a la mode: plasticity and polymodality in sensory neurons.

Curr Opin Physiol. 2019-6-1

[2]
Decoding Cellular Mechanisms for Mechanosensory Discrimination.

Neuron. 2021-1-20

[3]
Molecular mechanisms of cold pain.

Neurobiol Pain. 2020-1-28

[4]
Nociceptor subtypes and their incidence in rat lumbar dorsal root ganglia (DRGs): focussing on C-polymodal nociceptors, Aβ-nociceptors, moderate pressure receptors and their receptive field depths.

Curr Opin Physiol. 2019-10

[5]
A 4-year follow-up of non-freezing cold injury with cold allodynia and neuropathy in 26 naval soldiers.

Scand J Pain. 2019-7-26

[6]
Cold sensing by Na1.8-positive and Na1.8-negative sensory neurons.

Proc Natl Acad Sci U S A. 2019-2-12

[7]
The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice.

Sci Transl Med. 2018-10-10

[8]
PIEZO2 mediates injury-induced tactile pain in mice and humans.

Sci Transl Med. 2018-10-10

[9]
Molecular Architecture of the Mouse Nervous System.

Cell. 2018-8-9

[10]
Optogenetic Inhibition of CGRPα Sensory Neurons Reveals Their Distinct Roles in Neuropathic and Incisional Pain.

J Neurosci. 2018-6-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索