Liu Jiawei, Niu Wenxin, Liu Guigao, Chen Bo, Huang Jingtao, Cheng Hongfei, Hu Dianyi, Wang Jie, Liu Qing, Ge Jingjie, Yin Pengfei, Meng Fanqi, Zhang Qinghua, Gu Lin, Lu Qipeng, Zhang Hua
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore.
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
J Am Chem Soc. 2021 Mar 24;143(11):4387-4396. doi: 10.1021/jacs.1c00612. Epub 2021 Mar 11.
Phase engineering of nanomaterials (PEN) enables the preparation of metal nanomaterials with unconventional phases that are different from their thermodynamically stable counterparts. These unconventional-phase nanomaterials can serve as templates to construct precisely controlled metallic heterostructures for wide applications. Nevertheless, how the unconventional phase of templates affects the nucleation and growth of secondary metals still requires systematic explorations. Here, two-dimensional (2D) square-like Au nanosheets with an unconventional 2H/face-centered cubic () heterophase, composing of two pairs of opposite edges with 2H/ heterophase and phase, respectively, and two 2H/ heterophase basal planes, are prepared and then used as templates to grow one-dimensional (1D) Rh nanorods. The effect of different phases in different regions of the Au templates on the overgrowth of Rh nanorods has been systematically investigated. By tuning the reaction conditions, three types of 1D/2D Rh-Au heterostructures are prepared. In the type A heterostructure, Rh nanorods only grow on the defects including stacking faults and/or twin boundaries (denoted as -SF/T) and 2H phases in two 2H/ edges of the Au nanosheet. In the type B heterostructure, Rh nanorods grow on the -SF/T and 2H phases in two 2H/ edges and two 2H/ basal planes of the Au nanosheet. In the type C heterostructure, Rh nanorods grow on four edges and two basal planes of the Au nanosheet. Furthermore, the type C heterostructure shows promising performance toward the electrochemical hydrogen evolution reaction (HER) in acidic media, which is among the best reported Rh-based and other noble-metal-based HER electrocatalysts.
纳米材料的相工程(PEN)能够制备出具有非常规相的金属纳米材料,这些非常规相与它们热力学稳定的对应物不同。这些非常规相纳米材料可作为模板来构建精确可控的金属异质结构,以实现广泛应用。然而,模板的非常规相对二次金属成核和生长的影响仍需要系统探索。在此,制备了具有非常规2H/面心立方()异相的二维(2D)方形金纳米片,其由两对分别具有2H/异相和相的相对边缘以及两个2H/异相基面组成,然后将其用作模板来生长一维(1D)铑纳米棒。系统研究了金模板不同区域的不同相对铑纳米棒过度生长的影响。通过调整反应条件,制备了三种类型的1D/2D铑 - 金异质结构。在A型异质结构中,铑纳米棒仅生长在金纳米片两个2H/边缘的缺陷(包括堆垛层错和/或孪晶界,记为 -SF/T)和2H相上。在B型异质结构中,铑纳米棒生长在金纳米片两个2H/边缘和两个2H/基面的 -SF/T和2H相上。在C型异质结构中,铑纳米棒生长在金纳米片的四条边缘和两个基面上。此外,C型异质结构在酸性介质中对电化学析氢反应(HER)表现出有前景的性能,这是报道的基于铑和其他基于贵金属的HER电催化剂中性能最佳的之一。