Liu Yan, Hou Lei, Jiao Yucong, Wu Peiyi
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
ACS Appl Mater Interfaces. 2021 Mar 24;13(11):13319-13327. doi: 10.1021/acsami.1c01064. Epub 2021 Mar 11.
Quasi-solid state electrolyte is one of the promising options for next generation batteries due to its superiority on safety and electrochemistry performance. However, the trade-off between the electrolyte swelling ratio and mechanical property of the quasi-solid state electrolyte significantly influences the battery performance. Herein, we design a nonswelling, solvent-adaptive polymer gel composed of oleophobic zwitterion poly(3-(1-vinyl-3-imidazolio)-propanesulfonate) and oleophilic elastomer poly(2-methoxyethyl acrylate) segments to retain high battery performance without sacrificing the mechanical property in lithium batteries. The as-designed gel can not only uptake enough electrolyte for a high ionic conductivity of 1.78 mS cm but also achieve excellent mechanical strength with compression stress at 90% strain (σ) reaching 5.8 MPa after long time soaking for battery safety due to its nonswelling property in ester electrolyte. Moreover, the as-prepared zwitterionic gel is beneficial to electrolyte salt dissociation, which further enhances the ionic conductivity and transference number of batteries. Consequently, the gel electrolyte can cycle for more than 500 h under a high current density of 3 mA cm on dendrite inhibition performance, and when assembled with LiFePO as a cathode, the battery demonstrates a reversible specific capacity as high as 70 mAh g under a high current density of 5 C after 300 cycles. The rational designed solvophilic/solvophobic zwitterionic elastomers provide a guidance for engineering quasi-solid state electrolytes of different solvents with broad applications on flexible devices.
准固态电解质因其在安全性和电化学性能方面的优势,是下一代电池有前景的选择之一。然而,准固态电解质的电解质溶胀率与机械性能之间的权衡显著影响电池性能。在此,我们设计了一种由疏油两性离子聚(3-(1-乙烯基-3-咪唑啉)-丙烷磺酸盐)和亲油弹性体聚(丙烯酸2-甲氧基乙酯)链段组成的非溶胀、溶剂适应性聚合物凝胶,以在不牺牲锂电池机械性能的情况下保持高电池性能。所设计的凝胶不仅能吸收足够的电解质以实现1.78 mS cm的高离子电导率,而且由于其在酯电解质中的非溶胀特性,在长时间浸泡后,在90%应变(σ)下的压缩应力达到5.8 MPa,从而实现了优异的机械强度,有利于电池安全。此外,所制备的两性离子凝胶有利于电解质盐的解离,进一步提高了电池的离子电导率和迁移数。因此,该凝胶电解质在3 mA cm的高电流密度下对枝晶抑制性能可循环500 h以上,当与LiFePO4作为正极组装时,电池在5 C的高电流密度下经过300次循环后,可逆比容量高达70 mAh g。合理设计的亲溶剂/疏溶剂两性离子弹性体为准固态电解质在不同溶剂中的工程设计提供了指导,在柔性器件中有广泛应用。