Fu Yu, Chen Yifan, Zhou Limin
School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Xueyuan Road 1088, Shen Zhen 518055 Guang Dong, China.
School of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu Road 100, Shanghai 200092, China.
ACS Appl Mater Interfaces. 2022 Sep 14;14(36):40871-40880. doi: 10.1021/acsami.2c09771. Epub 2022 Aug 30.
Rechargeable lithium metal batteries (LMBs) are considered the "holy grail" of energy storage systems. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries has prevented their practical applications. The benefits of solid-state electrolyte for LMBs are limited due to the common compromise between ionic conductivity and mechanical property. This work proposes a mechanism for simultaneous improvement in ionic conductivity and mechanical strength of gel polymer electrolyte (GPE) which is based on tunable cross-linked polymer network through adjusting monomer ratios. With increasing bisphenol A ethoxylate dimethacrylate (E2BADMA) and poly(ethylene glycol) diacrylate (PEGDA) mass ratios in GPE precursors, the formed polymer network experienced a composition evolution from a 3D cross-linked mono PEGDA network to triple PEGDA, E2BADMA, and PEGDA/E2BADMA networks and then to dual E2BADMA and PEGDA/E2BADMA networks, accompanied by the increase in both storage modulus (from 6 to 37 MPa) and ionic conductivity (from 0.06 to 0.44 mS cm). As a result, the E2BADMA/PEGDA mass ratio of 2:1 facilitates the successful fabrication of a dual-network-supported GPE (PEEPL-12) with a mechanical strength of 37 MPa and superior electrochemical properties (a high ionic conductivity of 0.44 mS cm and a wide electrochemical stability window of 4.85 V vs Li/Li). Such polymer electrolyte-based symmetric lithium metal batteries delivered a long cycle life (2000 h at 0.1 mA cm and 0.1 mAh cm), and the Li|PEEPL-12|LiFePO cell delivered a high capacity of 140 mAh g at the 100th cycle at the current density of 0.1 C (1 C = 170 mAh g). A more thorough investigation indicated the formation of a stable solid electrolyte interphase layer on a lithium metal anode. These extraordinary features open up a venue for fabrication of advanced polymer electrolyte for long-cycle-life lithium metal batteries.
可充电锂金属电池(LMBs)被认为是储能系统的“圣杯”。不幸的是,这些电池中固有的不可控枝晶锂生长阻碍了它们的实际应用。由于离子电导率和机械性能之间的常见折衷,固态电解质对LMBs的益处有限。这项工作提出了一种基于通过调节单体比例来调控交联聚合物网络的机制,以同时提高凝胶聚合物电解质(GPE)的离子电导率和机械强度。随着GPE前驱体中双酚A乙氧基化二甲基丙烯酸酯(E2BADMA)和聚乙二醇二丙烯酸酯(PEGDA)质量比的增加,形成的聚合物网络经历了从三维交联单PEGDA网络到三PEGDA、E2BADMA和PEGDA/E2BADMA网络,然后到双E2BADMA和PEGDA/E2BADMA网络的组成演变,同时储能模量(从6兆帕增加到37兆帕)和离子电导率(从0.06毫西门子/厘米增加到0.44毫西门子/厘米)也随之增加。结果,E2BADMA/PEGDA质量比为2:1有利于成功制备具有37兆帕机械强度和优异电化学性能(高离子电导率0.44毫西门子/厘米和相对于Li/Li的宽电化学稳定窗口4.85伏)的双网络支撑GPE(PEEPL-12)。这种基于聚合物电解质的对称锂金属电池具有长循环寿命(在0.1毫安/平方厘米和0.1毫安时/平方厘米下为2000小时),并且Li|PEEPL-12|LiFePO电池在0.1 C(1 C = 170毫安时/克)的电流密度下第100次循环时提供了140毫安时/克的高容量。更深入的研究表明在锂金属阳极上形成了稳定的固体电解质界面层。这些非凡的特性为长循环寿命锂金属电池的先进聚合物电解质制造开辟了一条途径。