Suppr超能文献

线性化GW密度矩阵的改进单次总能量

Improved One-Shot Total Energies from the Linearized GW Density Matrix.

作者信息

Bruneval Fabien, Rodriguez-Mayorga Mauricio, Rinke Patrick, Dvorak Marc

机构信息

Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette, France.

Department of Applied Physics, Aalto University School of Science, 00076 Aalto, Finland.

出版信息

J Chem Theory Comput. 2021 Apr 13;17(4):2126-2136. doi: 10.1021/acs.jctc.0c01264. Epub 2021 Mar 11.

Abstract

The linearized GW density matrix (γ) is an efficient method to improve the static portion of the self-energy compared to that of ordinary perturbative GW while keeping the single-shot simplicity of the calculation. Previous work has shown that γ gives an improved Fock operator and total energy components that approach the self-consistent GW quality. Here, we test γ for dimer dissociation for the first time by studying N, LiH, and Be. We also calculate a set of self-consistent GW results in identical basis sets for a direct and consistent comparison. γ approaches self-consistent GW total energies for a starting point based on a high amount of exact exchange. We also compare the accuracy of different total energy functionals, which differ when evaluated with a non-self-consistent density or density matrix. While the errors in total energies among different functionals and starting points are small, the individual energy components show noticeable errors when compared to reference data. The energy component errors of γ are smaller than functionals of the density and we suggest that the linearized GW density matrix is a route to improving total energy evaluations in the adiabatic connection framework.

摘要

与普通微扰GW相比,线性化GW密度矩阵(γ)是一种改进自能静态部分的有效方法,同时保持了计算的单次简单性。先前的工作表明,γ给出了改进的福克算子和接近自洽GW质量的总能量分量。在这里,我们首次通过研究N、LiH和Be来测试γ对于二聚体解离的情况。我们还在相同的基组中计算了一组自洽GW结果,以便进行直接和一致的比较。基于大量精确交换的起始点,γ接近自洽GW总能量。我们还比较了不同总能量泛函的精度,当用非自洽密度或密度矩阵进行评估时,它们会有所不同。虽然不同泛函和起始点之间的总能量误差很小,但与参考数据相比,各个能量分量显示出明显的误差。γ的能量分量误差小于密度泛函,我们认为线性化GW密度矩阵是在绝热连接框架中改进总能量评估的一条途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验