Suppr超能文献

电子自旋矩作为负载于CN上的铁单原子催化剂的催化描述符。

Electronic Spin Moment As a Catalytic Descriptor for Fe Single-Atom Catalysts Supported on CN.

作者信息

Zhong Wenhui, Qiu Yue, Shen Hujun, Wang Xijun, Yuan Jianyong, Jia Chuanyi, Bi Siwei, Jiang Jun

机构信息

School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China.

Gusu Laboratory of Materials, Suzhou, Jiangsu 215123, P. R. China.

出版信息

J Am Chem Soc. 2021 Mar 24;143(11):4405-4413. doi: 10.1021/jacs.1c00889. Epub 2021 Mar 11.

Abstract

The electrocatalytic activity of transition-metal-based compounds is strongly related to the spin states. However, the underlying relationship connecting spin to catalytic activity remains unclear. Herein, we carried out density functional theory calculations on oxygen reduction reaction (ORR) catalyzed by Fe single-atom supported on CN (CN-Fe) to shed light on this relationship. It is found that the change of electronic spin moments of Fe and O due to molecular-catalyst adsorption scales with the amount of electron transfer from Fe to O, which promotes the catalytic activity of CN-Fe for driving ORR. The nearly linear relationship between the catalytic activity and spin moment variation suggests electronic spin moment as a promising catalytic descriptor for Fe single-atom based catalysts. Following the revealed relationship, the ORR barrier on CN-Fe was tuned to be as low as 0.10 eV through judicious manipulation of spin states. These findings thus provide important insights into the relationship between catalytic activity and spin, leading to new strategies for designing transition metal single-atom catalysts.

摘要

过渡金属基化合物的电催化活性与自旋态密切相关。然而,自旋与催化活性之间的潜在关系仍不明确。在此,我们对负载在CN上的铁单原子(CN-Fe)催化的氧还原反应(ORR)进行了密度泛函理论计算,以阐明这种关系。研究发现,由于分子催化剂吸附导致的Fe和O的电子自旋矩变化与从Fe到O的电子转移量成比例,这促进了CN-Fe驱动ORR的催化活性。催化活性与自旋矩变化之间的近似线性关系表明,电子自旋矩是基于铁单原子催化剂的一个有前景的催化描述符。根据所揭示的关系,通过巧妙地操纵自旋态,将CN-Fe上的ORR势垒调至低至0.10 eV。因此,这些发现为催化活性与自旋之间的关系提供了重要见解,从而为设计过渡金属单原子催化剂带来了新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验