Xu Xiaoqin, Guan Jingqi
Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
Chem Sci. 2024 Aug 19;15(36):14585-607. doi: 10.1039/d4sc04370g.
The development of high-efficiency atomic-level catalysts for energy-conversion and -storage technologies is crucial to address energy shortages. The spin states of diatomic catalysts (DACs) are closely tied to their catalytic activity. Adjusting the spin states of DACs' active centers can directly modify the occupancy of d-orbitals, thereby influencing the bonding strength between metal sites and intermediates as well as the energy transfer during electro reactions. Herein, we discuss various techniques for characterizing the spin states of atomic catalysts and strategies for modulating their active center spin states. Next, we outline recent progress in the study of spin effects in DACs for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), electrocatalytic nitrogen/nitrate reduction reaction (eNRR/NORR), and electrocatalytic carbon dioxide reduction reaction (eCORR) and provide a detailed explanation of the catalytic mechanisms influenced by the spin regulation of DACs. Finally, we offer insights into the future research directions in this critical field.
开发用于能量转换和存储技术的高效原子级催化剂对于解决能源短缺问题至关重要。双原子催化剂(DACs)的自旋态与其催化活性密切相关。调节DACs活性中心的自旋态可以直接改变d轨道的占据情况,从而影响金属位点与中间体之间的键合强度以及电化学反应过程中的能量转移。在此,我们讨论了表征原子催化剂自旋态的各种技术以及调节其活性中心自旋态的策略。接下来,我们概述了DACs在氧还原反应(ORR)、析氧反应(OER)、析氢反应(HER)、电催化氮/硝酸盐还原反应(eNRR/NORR)和电催化二氧化碳还原反应(eCORR)中自旋效应研究的最新进展,并详细解释了受DACs自旋调节影响的催化机制。最后,我们对这一关键领域未来的研究方向提出了见解。