Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
Biochemistry (Mosc). 2020 Dec;85(12):1613-1630. doi: 10.1134/S0006297920120135.
Ion-translocating ATPases and ATP synthases (F-, V-, A-type ATPases, and several P-type ATPases and ABC-transporters) catalyze ATP hydrolysis or ATP synthesis coupled with the ion transport across the membrane. F-, V-, and A-ATPases are protein nanomachines that combine transmembrane transport of protons or sodium ions with ATP synthesis/hydrolysis by means of a rotary mechanism. These enzymes are composed of two multisubunit subcomplexes that rotate relative to each other during catalysis. Rotary ATPases phosphorylate/dephosphorylate nucleotides directly, without the generation of phosphorylated protein intermediates. F-type ATPases are found in chloroplasts, mitochondria, most eubacteria, and in few archaea. V-type ATPases are eukaryotic enzymes present in a variety of cellular membranes, including the plasma membrane, vacuoles, late endosomes, and trans-Golgi cisternae. A-type ATPases are found in archaea and some eubacteria. F- and A-ATPases have two main functions: ATP synthesis powered by the proton motive force (pmf) or, in some prokaryotes, sodium-motive force (smf) and generation of the pmf or smf at the expense of ATP hydrolysis. In prokaryotes, both functions may be vitally important, depending on the environment and the presence of other enzymes capable of pmf or smf generation. In eukaryotes, the primary and the most crucial function of F-ATPases is ATP synthesis. Eukaryotic V-ATPases function exclusively as ATP-dependent proton pumps that generate pmf necessary for the transmembrane transport of ions and metabolites and are vitally important for pH regulation. This review describes the diversity of rotary ion-translocating ATPases from different organisms and compares the structural, functional, and regulatory features of these enzymes.
离子转运 ATP 酶和 ATP 合酶(F、V、A 型 ATP 酶以及几种 P 型 ATP 酶和 ABC 转运蛋白)催化 ATP 水解或 ATP 合成与跨膜离子转运偶联。F、V 和 A-ATP 酶是蛋白质纳米机器,它们通过旋转机制将质子或钠离子的跨膜转运与 ATP 合成/水解结合在一起。这些酶由两个多亚基亚基组成,在催化过程中相对旋转。旋转 ATP 酶直接磷酸化/去磷酸化核苷酸,而不产生磷酸化蛋白中间产物。F 型 ATP 酶存在于叶绿体、线粒体、大多数真细菌和少数古细菌中。V 型 ATP 酶是存在于各种细胞膜中的真核酶,包括质膜、液泡、晚期内体和高尔基 cisterna。A 型 ATP 酶存在于古细菌和一些真细菌中。F-和 A-ATP 酶有两个主要功能:由质子动力势(pmf)驱动的 ATP 合成,或在一些原核生物中,由钠离子动力势(smf)驱动的 ATP 合成,以及以消耗 ATP 水解为代价产生 pmf 或 smf。在原核生物中,这两个功能可能都至关重要,这取决于环境和存在其他能够产生 pmf 或 smf 的酶。在真核生物中,F-ATP 酶的主要和最关键的功能是 ATP 合成。真核 V-ATP 酶的功能完全是作为 ATP 依赖性质子泵,产生 pmf 是离子和代谢物跨膜转运所必需的,对 pH 调节至关重要。本综述描述了来自不同生物体的旋转离子转运 ATP 酶的多样性,并比较了这些酶的结构、功能和调节特征。