Suppr超能文献

具有多尺度特征聚合的深度光度立体视觉网络

Deep Photometric Stereo Network with Multi-Scale Feature Aggregation.

作者信息

Yu Chanki, Lee Sang Wook

机构信息

Department of Media Technology, Graduate School of Media, Sogang University, Seoul 04107, Korea.

Department of Art & Technology, School of Media, Arts and Science, Sogang University, Seoul 04107, Korea.

出版信息

Sensors (Basel). 2020 Nov 3;20(21):6261. doi: 10.3390/s20216261.

Abstract

We present photometric stereo algorithms robust to non-Lambertian reflection, which are based on a convolutional neural network in which surface normals of objects with complex geometry and surface reflectance are estimated from a given set of an arbitrary number of images. These images are taken from the same viewpoint under different directional illumination conditions. The proposed method focuses on surface normal estimation, where multi-scale feature aggregation is proposed to obtain a more accurate surface normal, and max pooling is adopted to obtain an intermediate order-agnostic representation in the photometric stereo scenario. The proposed multi-scale feature aggregation scheme using feature concatenation is easily incorporated into existing photometric stereo network architectures. Our experiments were performed with a DiLiGent photometric stereo benchmark dataset consisting of ten real objects, and they demonstrated that the accuracies of our calibrated and uncalibrated photometric stereo approaches were improved over those of baseline methods. In particular, our experiments also demonstrated that our uncalibrated photometric stereo outperformed the state-of-the-art method. Our work is the first to consider the multi-scale feature aggregation in photometric stereo, and we showed that our proposed multi-scale fusion scheme estimated the surface normal accurately and was beneficial to improving performance.

摘要

我们提出了对非朗伯反射具有鲁棒性的光度立体算法,该算法基于卷积神经网络,其中具有复杂几何形状和表面反射率的物体的表面法线是从给定的任意数量图像集合中估计出来的。这些图像是在不同方向光照条件下从同一视角拍摄的。所提出的方法侧重于表面法线估计,其中提出了多尺度特征聚合以获得更准确的表面法线,并采用最大池化在光度立体场景中获得中间的与阶数无关的表示。所提出的使用特征拼接的多尺度特征聚合方案很容易纳入现有的光度立体网络架构。我们使用由十个真实物体组成的DiLiGent光度立体基准数据集进行了实验,结果表明我们的校准和未校准光度立体方法的精度比基线方法有所提高。特别是,我们的实验还表明,我们的未校准光度立体方法优于现有技术方法。我们的工作首次考虑了光度立体中的多尺度特征聚合,并且我们表明所提出的多尺度融合方案能够准确估计表面法线,并且有利于提高性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41bd/7675179/67ccdbdc22f1/sensors-20-06261-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验