Suppr超能文献

同轴电纺仿生共聚物纤维在扩散磁共振成像中的应用。

Coaxial electrospun biomimetic copolymer fibres for application in diffusion magnetic resonance imaging.

机构信息

Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1V 6LJ, United Kingdom.

UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom.

出版信息

Bioinspir Biomim. 2021 Jun 14;16(4). doi: 10.1088/1748-3190/abedcf.

Abstract

. The use of diffusion magnetic resonance imaging (dMRI) opens the door to characterizing brain microstructure because water diffusion is anisotropic in axonal fibres in brain white matter and is sensitive to tissue microstructural changes. As dMRI becomes more sophisticated and microstructurally informative, it has become increasingly important to use a reference object (usually called an imaging phantom) for validation of dMRI. This study aims to develop axon-mimicking physical phantoms from biocopolymers and assess their feasibility for validating dMRI measurements.. We employed a simple and one-step method-coaxial electrospinning-to prepare axon-mimicking hollow microfibres from polycaprolactone--polyethylene glycol (PCL--PEG) and poly(D, L-lactide-co-glycolic) acid (PLGA), and used them as building elements to create axon-mimicking phantoms. Electrospinning was firstly conducted using two types of PCL--PEG and two types of PLGA with different molecular weights in various solvents, with different polymer concentrations, for determining their spinnability. Polymer/solvent concentration combinations with good fibre spinnability were used as the shell material in the following co-electrospinning process in which the polyethylene oxide polymer was used as the core material. Following the microstructural characterization of both electrospun and co-electrospun fibres using optical and electron microscopy, two prototype phantoms were constructed from co-electrospun anisotropic hollow microfibres after inserting them into water-filled test tubes.. Hollow microfibres that mimic the axon microstructure were successfully prepared from the appropriate core and shell material combinations. dMRI measurements of two phantoms on a 7 tesla (T) pre-clinical scanner revealed that diffusivity and anisotropy measurements are in the range of brain white matter.. This feasibility study showed that co-electrospun PCL--PEG and PLGA microfibre-based axon-mimicking phantoms could be used in the validation of dMRI methods which seek to characterize white matter microstructure.

摘要

. 弥散磁共振成像(dMRI)的应用为脑微结构特征的描述开辟了道路,因为脑白质中的轴突纤维中水的扩散是各向异性的,并且对组织微结构的变化很敏感。随着 dMRI 变得越来越复杂和具有更多的微结构信息,使用参考物体(通常称为成像仿体)来验证 dMRI 变得越来越重要。本研究旨在从生物共聚物中开发出模仿轴突的物理仿体,并评估其验证 dMRI 测量的可行性。我们采用了一种简单的一步同轴静电纺丝法,从聚己内酯-聚乙二醇(PCL-PEG)和聚(D,L-丙交酯-co-乙交酯)酸(PLGA)中制备出模仿轴突的中空微纤维,并将其用作构建元件来创建模仿轴突的仿体。首先在不同的溶剂中,使用两种类型的 PCL-PEG 和两种类型的 PLGA 进行静电纺丝,以确定其可纺性,使用不同的聚合物浓度。具有良好纤维可纺性的聚合物/溶剂浓度组合被用作随后的共静电纺丝过程中的壳材料,其中聚氧化乙烯聚合物被用作芯材料。在使用光学显微镜和电子显微镜对静电纺丝和共静电纺丝纤维进行微观结构表征之后,从共静电纺丝各向异性中空微纤维中构建了两个原型仿体,然后将其插入充满水的试管中。从合适的芯和壳材料组合中成功制备出了模仿轴突微观结构的中空微纤维。在 7 特斯拉(T)的临床前扫描仪上对两个仿体进行 dMRI 测量,结果显示扩散率和各向异性测量值在脑白质范围内。这项可行性研究表明,共静电纺丝的 PCL-PEG 和 PLGA 微纤维基模仿轴突的仿体可用于验证旨在描述白质微结构的 dMRI 方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验