Suppr超能文献

用于完整 CLEM 工作流程的 HPM live μ。

HPM live μ for a full CLEM workflow.

机构信息

CryoCapCell, Kremlin-Bicêtre, France.

Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Cell Biology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.

出版信息

Methods Cell Biol. 2021;162:115-149. doi: 10.1016/bs.mcb.2020.10.022. Epub 2021 Feb 18.

Abstract

With the development of advanced imaging methods that took place in the last decade, the spatial correlation of microscopic and spectroscopic information-known as multimodal imaging or correlative microscopy (CM)-has become a broadly applied technique to explore biological and biomedical materials at different length scales. Among the many different combinations of techniques, Correlative Light and Electron Microscopy (CLEM) has become the flagship of this revolution. Where light (mainly fluorescence) microscopy can be used directly for the live imaging of cells and tissues, for almost all applications, electron microscopy (EM) requires fixation of the biological materials. Although sample preparation for EM is traditionally done by chemical fixation and embedding in a resin, rapid cryogenic fixation (vitrification) has become a popular way to avoid the formation of artifacts related to the chemical fixation/embedding procedures. During vitrification, the water in the sample transforms into an amorphous ice, keeping the ultrastructure of the biological sample as close as possible to the native state. One immediate benefit of this cryo-arrest is the preservation of protein fluorescence, allowing multi-step multi-modal imaging techniques for CLEM. To minimize the delay separating live imaging from cryo-arrest, we developed a high-pressure freezing (HPF) system directly coupled to a light microscope. We address the optimization of sample preservation and the time needed to capture a biological event, going from live imaging to cryo-arrest using HPF. To further explore the potential of cryo-fixation related to the forthcoming transition from imaging 2D (cell monolayers) to imaging 3D samples (tissue) and the associated importance of homogeneous deep vitrification, the HPF core technology has been revisited to allow easy modification of the environmental parameters during vitrification. Lastly, we will discuss the potential of our HPM within CLEM protocols especially for correlating live imaging using the Zeiss LSM900 with electron microscopy.

摘要

随着过去十年先进成像方法的发展,微观和光谱信息的空间相关性——即多模态成像或相关显微镜(CM)——已成为一种广泛应用的技术,可用于探索不同长度尺度的生物和生物医学材料。在许多不同的技术组合中,相关光和电子显微镜(CLEM)已成为这一革命的旗舰。虽然光(主要是荧光)显微镜可直接用于细胞和组织的活成像,但对于几乎所有应用,电子显微镜(EM)都需要固定生物材料。尽管 EM 的样品制备传统上是通过化学固定和嵌入树脂来完成的,但快速低温固定(玻璃化)已成为避免与化学固定/嵌入过程相关的伪影形成的流行方法。在玻璃化过程中,样品中的水转化为无定形冰,使生物样品的超微结构尽可能接近天然状态。这种冷冻捕获的一个直接好处是保留蛋白质荧光,允许用于 CLEM 的多步多模态成像技术。为了尽量减少将活成像与冷冻捕获分离的延迟,我们开发了一种直接与显微镜耦合的高压冷冻(HPF)系统。我们解决了优化样品保存和捕获生物事件所需的时间的问题,从使用 HPF 的活成像到冷冻捕获。为了进一步探索与从二维成像(细胞单层)过渡到三维样本成像(组织)相关的冷冻固定的潜力,以及均匀深玻璃化的相关重要性,HPF 核心技术已经过重新审视,以允许在玻璃化过程中轻松修改环境参数。最后,我们将讨论我们的 HPM 在 CLEM 方案中的潜力,特别是对于使用蔡司 LSM900 进行活成像与电子显微镜的相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验