Bioinformatics Programming Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore 632 014, India.
J Genet. 2021;100.
Human clear cell renal cell carcinoma (ccRCC) is the most common and frequently occurring histological subtype of RCC. Unlike other carcinomas, candidate predictive biomarkers for this type are in need to explore the molecular mechanism of ccRCC and identify candidate target genes for improving disease management. For this, we chose case-control-based studies from the Gene Expression Omnibus and subjected the gene expression microarray data to combined effect size meta-analysis for identifying shared genes signature. Further, we constructed a subnetwork of these gene signatures and evaluated topological parameters during the gene deletion analysis to get to the central hub genes, as they form the backbone of the network and its integrity. Parallelly, we carried out functional enrichment analysis using gene ontology and Elsevier disease pathway collection. We also performed microRNAs target gene analysis and constructed a regulatory network. We identified a total of 577 differentially expressed genes (DEGs), where 146 overexpressed and 431 underexpressed with a significant threshold of adjusted values <0.05. Enrichment analysis of these DEGs' functions showed a relation to metabolic and cellular pathways like metabolic reprogramming in cancer, proteins with altered expression in cancer metabolic reprogramming, and glycolysis activation in cancer (Warburg effect). Our analysis revealed the potential role of and in ccRCC by altering metabolic pathways and amyloid beta precursor protein () role in altering cell-cycle growth for the tumour progression in ccRCC conditions. Identification of these candidate predictive genes paves the way for the development of biomarker-based methods for this carcinoma.
人类肾透明细胞癌(ccRCC)是 RCC 中最常见和最常发生的组织学亚型。与其他癌不同,需要探索这种类型的候选预测生物标志物,以了解 ccRCC 的分子机制,并确定候选靶基因以改善疾病管理。为此,我们从基因表达综合数据库中选择了基于病例对照的研究,并对基因表达微阵列数据进行了合并效应大小荟萃分析,以确定共享基因特征。此外,我们构建了这些基因特征的子网络,并在基因缺失分析中评估拓扑参数,以获得核心基因,因为它们构成了网络的骨干及其完整性。同时,我们使用基因本体和爱思唯尔疾病途径集进行了功能富集分析。我们还进行了 microRNAs 靶基因分析并构建了调控网络。我们总共鉴定出 577 个差异表达基因(DEGs),其中 146 个过表达,431 个低表达,调整后的 值<0.05。这些 DEGs 功能的富集分析表明,它们与代谢和细胞途径有关,如癌症中的代谢重编程、癌症代谢重编程中表达改变的蛋白质和癌症中的糖酵解激活(Warburg 效应)。我们的分析表明,通过改变代谢途径,和在改变细胞周期生长方面的作用,在 ccRCC 条件下改变淀粉样前体蛋白()在肿瘤进展中的作用,可能在 ccRCC 中发挥作用。这些候选预测基因的鉴定为该癌的基于生物标志物的方法的发展铺平了道路。