Suppr超能文献

封装自旋交叉分子的单壁碳纳米管中的自旋态相关电导率。

Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules.

作者信息

Villalva Julia, Develioglu Aysegul, Montenegro-Pohlhammer Nicolas, Sánchez-de-Armas Rocío, Gamonal Arturo, Rial Eduardo, García-Hernández Mar, Ruiz-Gonzalez Luisa, Costa José Sánchez, Calzado Carmen J, Pérez Emilio M, Burzurí Enrique

机构信息

IMDEA Nanociencia, Campus de Cantoblanco, Madrid, Spain.

Departamento de Química Física, Universidad de Sevilla, Sevilla, Spain.

出版信息

Nat Commun. 2021 Mar 11;12(1):1578. doi: 10.1038/s41467-021-21791-3.

Abstract

Spin crossover (SCO) molecules are promising nanoscale magnetic switches due to their ability to modify their spin state under several stimuli. However, SCO systems face several bottlenecks when downscaling into nanoscale spintronic devices: their instability at the nanoscale, their insulating character and the lack of control when positioning nanocrystals in nanodevices. Here we show the encapsulation of robust Fe-based SCO molecules within the 1D cavities of single-walled carbon nanotubes (SWCNT). We find that the SCO mechanism endures encapsulation and positioning of individual heterostructures in nanoscale transistors. The SCO switch in the guest molecules triggers a large conductance bistability through the host SWCNT. Moreover, the SCO transition shifts to higher temperatures and displays hysteresis cycles, and thus memory effect, not present in crystalline samples. Our results demonstrate how encapsulation in SWCNTs provides the backbone for the readout and positioning of SCO molecules into nanodevices, and can also help to tune their magnetic properties at the nanoscale.

摘要

自旋交叉(SCO)分子因其能够在多种刺激下改变自旋状态而有望成为纳米级磁开关。然而,当缩小规模应用于纳米级自旋电子器件时,SCO系统面临几个瓶颈:它们在纳米尺度上的不稳定性、绝缘特性以及在纳米器件中定位纳米晶体时缺乏控制。在此,我们展示了在单壁碳纳米管(SWCNT)的一维空腔内封装坚固的铁基SCO分子。我们发现,SCO机制在纳米级晶体管中能承受单个异质结构的封装和定位。客体分子中的SCO开关通过主体SWCNT触发大的电导双稳性。此外,SCO转变温度升高并显示出滞后循环,从而具有晶体样品中不存在的记忆效应。我们的结果表明,在SWCNT中进行封装如何为将SCO分子读出和定位到纳米器件中提供了支撑,并且还有助于在纳米尺度上调节它们的磁性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c5a/7952721/9df78a71bc0f/41467_2021_21791_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验