Suppr超能文献

聚肌胞苷酸激活的小胶质细胞破坏神经元周围网络并调节原代海马神经元的突触平衡。

Poly I:C Activated Microglia Disrupt Perineuronal Nets and Modulate Synaptic Balance in Primary Hippocampal Neurons .

作者信息

Wegrzyn David, Freund Nadja, Faissner Andreas, Juckel Georg

机构信息

Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Bochum, Germany.

Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany.

出版信息

Front Synaptic Neurosci. 2021 Feb 23;13:637549. doi: 10.3389/fnsyn.2021.637549. eCollection 2021.

Abstract

Perineuronal nets (PNNs) are specialized, reticular structures of the extracellular matrix (ECM) that can be found covering the soma and proximal dendrites of a neuronal subpopulation. Recent studies have shown that PNNs can highly influence synaptic plasticity and are disrupted in different neuropsychiatric disorders like schizophrenia. Interestingly, there is a growing evidence that microglia can promote the loss of PNNs and contribute to neuropsychiatric disorders. Based on this knowledge, we analyzed the impact of activated microglia on hippocampal neuronal networks . Therefore, primary cortical microglia were cultured and stimulated via polyinosinic-polycytidylic acid (Poly I:C; 50 μg/ml) administration. The Poly I:C treatment induced the expression and secretion of different cytokines belonging to the CCL- and CXCL-motif chemokine family as well as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). In addition, the expression of matrix metalloproteinases (MMPs) could be verified via RT-PCR analysis. Embryonic hippocampal neurons were then cultured for 12 days (DIV) and treated for 24 h with microglial conditioned medium. Interestingly, immunocytochemical staining of the PNN component Aggrecan revealed a clear disruption of PNNs accompanied by a significant increase of glutamatergic and a decrease of γ-aminobutyric acid-(GABA)ergic synapse numbers on PNN wearing neurons. In contrast, PNN negative neurons showed a significant reduction in both, glutamatergic and GABAergic synapses. Electrophysiological recordings were performed via multielectrode array (MEA) technology and unraveled a significantly increased spontaneous network activity that sustained also 24 and 48 h after the administration of microglia conditioned medium. Taken together, we could observe a strong impact of microglial secreted factors on PNN integrity, synaptic plasticity and electrophysiological properties of cultured neurons. Our observations might enhance the understanding of neuron-microglia interactions considering the ECM.

摘要

神经元周围网(PNNs)是细胞外基质(ECM)的特殊网状结构,可覆盖神经元亚群的胞体和近端树突。最近的研究表明,PNNs可对突触可塑性产生高度影响,并且在精神分裂症等不同神经精神疾病中会遭到破坏。有趣的是,越来越多的证据表明,小胶质细胞可促使PNNs丧失,并导致神经精神疾病。基于这一认识,我们分析了活化的小胶质细胞对海马神经元网络的影响。因此,培养原代皮质小胶质细胞,并通过给予多聚肌苷酸-多聚胞苷酸(Poly I:C;50μg/ml)进行刺激。Poly I:C处理诱导了属于CCL-和CXCL-基序趋化因子家族的不同细胞因子以及白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)的表达和分泌。此外,可通过逆转录聚合酶链反应(RT-PCR)分析验证基质金属蛋白酶(MMPs)的表达。然后将胚胎海马神经元培养12天(培养天数,DIV),并用小胶质细胞条件培养基处理24小时。有趣的是,PNN成分聚集蛋白聚糖的免疫细胞化学染色显示PNNs明显遭到破坏,同时PNN包绕神经元上的谷氨酸能突触数量显著增加,γ-氨基丁酸(GABA)能突触数量减少。相比之下,PNN阴性神经元的谷氨酸能和GABA能突触均显著减少。通过多电极阵列(MEA)技术进行电生理记录,结果显示自发网络活动显著增加,在给予小胶质细胞条件培养基后24小时和48小时仍持续存在。综上所述,我们可以观察到小胶质细胞分泌因子对培养神经元的PNN完整性、突触可塑性和电生理特性有强烈影响。考虑到细胞外基质,我们的观察结果可能会增进对神经元-小胶质细胞相互作用的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda3/7940526/13b5d03bdcfa/fnsyn-13-637549-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验