Suppr超能文献

矿浆密度对炼油废催化剂中金属生物浸出的影响。

Effect of pulp density on the bioleaching of metals from petroleum refinery spent catalyst.

作者信息

Nagar Neha, Garg Himanshi, Sharma Neha, Awe Samuel Ayowole, Gahan Chandra Sekhar

机构信息

Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817 Rajasthan India.

Research & Development Department, Automotive Components Floby AB, Aspenäsgatan 2, 521 51 Floby, Sweden.

出版信息

3 Biotech. 2021 Mar;11(3):143. doi: 10.1007/s13205-021-02686-y. Epub 2021 Feb 25.

Abstract

Bioleaching is one of the well-known methods of metal recovery with Environmental benefits. This process has been extensively used for combating improper waste management issues along with metal reclamation. The aim of this study is to bioleach spent petroleum refinery catalyst at variant pulp densities (PD) (5, 10 and 15%) using microorganisms in acidic pH (1.5-1.6) and mesophilic temperature (30-35 °C). The study includes leaching yields of metals like nickel, molybdenum, copper and aluminum. The three bioleaching experiments with different pulp densities yielded a maximum of more than 90% nickel, 73% copper, 87% molybdenum and 24% aluminum. The results are validated 5, 10, and 15% pulp density and the result is validated with pH, Redox potential, microbial population, sulphate concentration and ferrous iron, concentration. The time saving due to faster nickel dissolution using iron and sulphur oxidizing microorganisms would be economical for the bioleaching process.

摘要

生物浸出是一种具有环境效益的著名金属回收方法。该过程已被广泛用于解决不当的废物管理问题以及金属回收。本研究的目的是在酸性pH值(1.5 - 1.6)和中温温度(30 - 35°C)下,使用微生物在不同矿浆浓度(5%、10%和15%)对废石油精炼催化剂进行生物浸出。该研究包括镍、钼、铜和铝等金属的浸出率。在不同矿浆浓度下进行的三次生物浸出实验,镍的浸出率最高超过90%,铜为73%,钼为87%,铝为24%。结果在5%、10%和15%的矿浆浓度下得到验证,并且通过pH值、氧化还原电位、微生物数量、硫酸盐浓度和亚铁离子浓度进行了验证。由于使用铁和硫氧化微生物能更快地溶解镍,从而节省时间,这对于生物浸出过程来说将是经济的。

相似文献

1
Effect of pulp density on the bioleaching of metals from petroleum refinery spent catalyst.
3 Biotech. 2021 Mar;11(3):143. doi: 10.1007/s13205-021-02686-y. Epub 2021 Feb 25.
2
Optimization of two-step bioleaching of spent petroleum refinery catalyst by Acidithiobacillus thiooxidans using response surface methodology.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2014;49(14):1740-53. doi: 10.1080/10934529.2014.951264.
3
Bench scale microbial catalysed leaching of mobile phone PCBs with an increasing pulp density.
Heliyon. 2019 Dec 5;5(12):e02883. doi: 10.1016/j.heliyon.2019.e02883. eCollection 2019 Dec.
4
Metal recovery from spent refinery catalysts by means of biotechnological strategies.
J Hazard Mater. 2010 Jun 15;178(1-3):529-34. doi: 10.1016/j.jhazmat.2010.01.114. Epub 2010 Feb 1.
5
Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles.
J Hazard Mater. 2010 Mar 15;175(1-3):267-73. doi: 10.1016/j.jhazmat.2009.09.159. Epub 2009 Oct 6.
8
Feasibility of bioleaching integrated with a chemical oxidation process for improved leaching of valuable metals from refinery spent hydroprocessing catalyst.
Environ Sci Pollut Res Int. 2022 May;29(23):34288-34301. doi: 10.1007/s11356-022-18680-7. Epub 2022 Jan 17.
9
Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2010;45(4):476-82. doi: 10.1080/10934520903539424.

本文引用的文献

1
Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer.
Biotechnol Adv. 2018 Nov 15;36(7):1815-1827. doi: 10.1016/j.biotechadv.2018.07.001. Epub 2018 Jul 7.
2
Biotechnology of extremely thermophilic archaea.
FEMS Microbiol Rev. 2018 Sep 1;42(5):543-578. doi: 10.1093/femsre/fuy012.
3
Changes in the fractionation profile of Al, Ni, and Mo during bioleaching of spent hydroprocessing catalysts with Acidithiobacillus ferrooxidans.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2018;53(11):1006-1014. doi: 10.1080/10934529.2018.1471033. Epub 2018 Jun 5.
4
Electrochemical Applications in Metal Bioleaching.
Adv Biochem Eng Biotechnol. 2019;167:327-359. doi: 10.1007/10_2017_36.
5
Geomicrobiology of the built environment.
Nat Microbiol. 2017 Mar 28;2:16275. doi: 10.1038/nmicrobiol.2016.275.
6
Mechanochemical processing of molybdenum and vanadium sulfides for metal recovery from spent catalysts wastes.
Waste Manag. 2017 Feb;60:734-738. doi: 10.1016/j.wasman.2016.06.035. Epub 2016 Jul 12.
7
A review of metal recovery from spent petroleum catalysts and ash.
Waste Manag. 2015 Nov;45:420-33. doi: 10.1016/j.wasman.2015.07.007. Epub 2015 Jul 15.
8
Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2014;49(7):807-18. doi: 10.1080/10934529.2014.882211.
9
Metal recovery from spent refinery catalysts by means of biotechnological strategies.
J Hazard Mater. 2010 Jun 15;178(1-3):529-34. doi: 10.1016/j.jhazmat.2010.01.114. Epub 2010 Feb 1.
10
Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles.
J Hazard Mater. 2010 Mar 15;175(1-3):267-73. doi: 10.1016/j.jhazmat.2009.09.159. Epub 2009 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验