Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, PR China.
Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geoscience, Wuhan, Hubei 430074, PR China..
Biotechnol Adv. 2018 Nov 15;36(7):1815-1827. doi: 10.1016/j.biotechadv.2018.07.001. Epub 2018 Jul 7.
Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively. Because of the block of cell envelope and the low difference of redox potential between the intracellular and extracellular surroundings, the proceeding of EET depends mainly on the help of a variety of mediators that function as an electron carrier or bridge. In this Review, we will summarize a wide range of redox mediators and further discuss their functional mechanisms in EET that drives a series of microbial electrocatalytic reactions. Studying these mediators adds to our knowledge of how charge transport and electrochemical reactions occur at the microorganism-electrode interface. This understanding would promote the widespread applications of microbial electrocatalysis in microbial fuel cells, bioremediation, bioelectrosynthesis, biomining, nanomaterial productions, etc. These improved applications will greatly benefit the sustainable development of the environmental-friendly biochemical industries.
氧化还原介体在许多微生物电催化活跃发生的环境中,对细胞外电子传递(EET)起着重要作用。由于细胞膜的阻隔以及细胞内外环境之间氧化还原电位的差异较低,EET 的进行主要依赖于各种作为电子载体或桥梁的介体的帮助。在这篇综述中,我们将总结广泛的氧化还原介体,并进一步讨论它们在驱动一系列微生物电催化反应的 EET 中的功能机制。研究这些介体有助于我们了解电荷传输和电化学在微生物-电极界面上是如何发生的。这种理解将促进微生物电催化在微生物燃料电池、生物修复、生物电化学合成、生物采矿、纳米材料生产等领域的广泛应用。这些改进的应用将极大地有益于环保型生化工业的可持续发展。