Ren Zhihong, Li Weidong, Smerzi Augusto, Gessner Manuel
Institute of Theoretical Physics and Department of Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China.
Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, 75005 Paris, France.
Phys Rev Lett. 2021 Feb 26;126(8):080502. doi: 10.1103/PhysRevLett.126.080502.
We characterize metrologically useful multipartite entanglement by representing partitions with Young diagrams. We derive entanglement witnesses that are sensitive to the shape of Young diagrams and show that Dyson's rank acts as a resource for quantum metrology. Common quantifiers, such as the entanglement depth and k-separability are contained in this approach as the diagram's width and height. Our methods are experimentally accessible in a wide range of atomic systems, as we illustrate by analyzing published data on the quantum Fisher information and spin-squeezing coefficients.
我们通过用杨氏图表示划分来刻画对计量学有用的多体纠缠。我们推导出对杨氏图形状敏感的纠缠见证,并表明戴森秩可作为量子计量学的一种资源。常见的量化指标,如纠缠深度和k - 可分性,在这种方法中表现为图的宽度和高度。我们的方法在广泛的原子系统中都可通过实验实现,正如我们通过分析已发表的关于量子费希尔信息和自旋压缩系数的数据所说明的那样。