Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA.
Laura P. and Leland K. Whittier Virtual Pediatric Intensive Care Unit, Children's Hospital Los Angeles, Los Angeles, CA.
Pediatr Crit Care Med. 2021 Jun 1;22(6):519-529. doi: 10.1097/PCC.0000000000002682.
Develop, as a proof of concept, a recurrent neural network model using electronic medical records data capable of continuously assessing an individual child's risk of mortality throughout their ICU stay as a proxy measure of severity of illness.
Retrospective cohort study.
PICU in a tertiary care academic children's hospital.
PATIENTS/SUBJECTS: Twelve thousand five hundred sixteen episodes (9,070 children) admitted to the PICU between January 2010 and February 2019, partitioned into training (50%), validation (25%), and test (25%) sets.
None.
On 2,475 test set episodes lasting greater than or equal to 24 hours in the PICU, the area under the receiver operating characteristic curve of the recurrent neural network's 12th hour predictions was 0.94 (CI, 0.93-0.95), higher than those of Pediatric Index of Mortality 2 (0.88; CI, [0.85-0.91]; p < 0.02), Pediatric Risk of Mortality III (12th hr) (0.89; CI, [0.86-0.92]; p < 0.05), and Pediatric Logistic Organ Dysfunction day 1 (0.85; [0.81-0.89]; p < 0.002). The recurrent neural network's discrimination increased with more acquired data and smaller lead time, achieving a 0.99 area under the receiver operating characteristic curve 24 hours prior to discharge. Despite not having diagnostic information, the recurrent neural network performed well across different primary diagnostic categories, generally achieving higher area under the receiver operating characteristic curve for these groups than the other three scores. On 692 test set episodes lasting greater than or equal to 5 days in the PICU, the recurrent neural network area under the receiver operating characteristic curves significantly outperformed their daily Pediatric Logistic Organ Dysfunction counterparts (p < 0.005).
The recurrent neural network model can process hundreds of input variables contained in a patient's electronic medical record and integrate them dynamically as measurements become available. Its high discrimination suggests the recurrent neural network's potential to provide an accurate, continuous, and real-time assessment of a child in the ICU.
开发一个基于电子病历数据的递归神经网络模型,作为疾病严重程度的替代指标,用于连续评估个体患儿在 ICU 期间的死亡率,以验证该模型的概念。
回顾性队列研究。
三级儿童专科医院的 PICU。
患者/受试者:2010 年 1 月至 2019 年 2 月期间,共有 12516 例(9070 名儿童)入住 PICU,分为训练(50%)、验证(25%)和测试(25%)集。
无。
在 25 小时以上的 2475 例测试集病例中,递归神经网络第 12 小时预测的接收者操作特征曲线下面积为 0.94(CI,0.93-0.95),高于儿科死亡率 2 (0.88;CI,[0.85-0.91];p < 0.02)、儿科死亡率 3(第 12 小时)(0.89;CI,[0.86-0.92];p < 0.05)和儿科逻辑器官功能障碍第 1 天(0.85;[0.81-0.89];p < 0.002)。随着获得的数据增多和时间提前量减小,递归神经网络的判别能力提高,在出院前 24 小时达到了 0.99 的接收者操作特征曲线下面积。尽管没有诊断信息,但递归神经网络在不同的主要诊断类别中表现良好,通常在这些组中获得的接收者操作特征曲线下面积高于其他三个评分。在 24 小时以上的 692 例测试集中,递归神经网络的接收者操作特征曲线下面积明显优于每日儿科逻辑器官功能障碍评分(p < 0.005)。
递归神经网络模型可以处理患者电子病历中包含的数百个输入变量,并在测量值可用时动态整合它们。其高判别能力表明,递归神经网络有可能为 ICU 中的患儿提供准确、连续和实时的评估。