UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey.
ETH Zurich, Department of Health Sciences and Technology, 8092 Zurich, Switzerland and Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
Biomater Sci. 2021 May 18;9(10):3650-3661. doi: 10.1039/d0bm02192j.
Glycosylation is a crucial post-translational modification for a wide range of functionalities. Adhesive protein-based biomaterials in nature rely on heavily glycosylated proteins such as spider silk and mussel adhesive proteins. Engineering protein-based biomaterials genetically enables desired functions and characteristics. Additionally, utilization of glycosylation for biomaterial engineering can expand possibilities by including saccharides to the inventory of building blocks. Here, de novo glycosylation of Bacillus subtilis amyloid-like biofilm protein TasA using a Campylobacter jejuni glycosylation circuit is proposed to be a novel biomaterial engineering method for increasing adhesiveness of TasA fibrils. A C. jejuni glycosylation motif is genetically incorporated to tasA gene and expressed in Escherichia coli containing the C. jejuni pgl protein glycosylation pathway. Glycosylated TasA fibrils indicate enhanced adsorption on the gold surface without disruption of fibril formation. Our findings suggest that N-linked glycosylation can be a promising tool for engineering protein-based biomaterials specifically regarding adhesion.
糖基化是广泛功能的关键翻译后修饰。自然界中基于黏附蛋白的生物材料依赖于高度糖基化的蛋白质,如蜘蛛丝和贻贝类黏附蛋白。通过基因工程对蛋白质基生物材料进行工程化处理可以赋予其所需的功能和特性。此外,通过将糖基化用于生物材料工程,可以通过将糖添加到构建块的库存中来扩大可能性。在这里,提议使用空肠弯曲菌糖基化回路对枯草芽孢杆菌淀粉样生物膜蛋白 TasA 进行从头糖基化,作为增加 TasA 纤维粘附性的新型生物材料工程方法。将空肠弯曲菌糖基化基序基因内插入到 tasA 基因中,并在含有空肠弯曲菌 pgl 蛋白糖基化途径的大肠杆菌中表达。糖基化的 TasA 纤维表明在金表面上的吸附增强,而不会破坏纤维形成。我们的研究结果表明,N 连接糖基化可能是一种很有前途的工程化蛋白质基生物材料的工具,特别是在黏附方面。