Suppr超能文献

MIGO-NAS:迈向快速且可泛化的神经架构搜索。

MIGO-NAS: Towards Fast and Generalizable Neural Architecture Search.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Sep;43(9):2936-2952. doi: 10.1109/TPAMI.2021.3065138. Epub 2021 Aug 4.

Abstract

Neural architecture search (NAS) has achieved unprecedented performance in various computer vision tasks. However, most existing NAS methods are defected in search efficiency and model generalizability. In this paper, we propose a novel NAS framework, termed MIGO-NAS, with the aim to guarantee the efficiency and generalizability in arbitrary search spaces. On the one hand, we formulate the search space as a multivariate probabilistic distribution, which is then optimized by a novel multivariate information-geometric optimization (MIGO). By approximating the distribution with a sampling, training, and testing pipeline, MIGO guarantees the memory efficiency, training efficiency, and search flexibility. Besides, MIGO is the first time to decrease the estimation error of natural gradient in multivariate distribution. On the other hand, for a set of specific constraints, the neural architectures are generated by a novel dynamic programming network generation (DPNG), which significantly reduces the training cost under various hardware environments. Experiments validate the advantages of our approach over existing methods by establishing a superior accuracy and efficiency i.e., 2.39 test error on CIFAR-10 benchmark and 21.7 on ImageNet benchmark, with only 1.5 GPU hours and 96 GPU hours for searching, respectively. Besides, the searched architectures can be well generalize to computer vision tasks including object detection and semantic segmentation, i.e., 25× FLOPs compression, with 6.4 mAP gain over Pascal VOC dataset, and 29.9× FLOPs compression, with only 1.41 percent performance drop over Cityscapes dataset. The code is publicly available.

摘要

神经结构搜索 (NAS) 在各种计算机视觉任务中取得了前所未有的性能。然而,大多数现有的 NAS 方法在搜索效率和模型泛化能力方面存在缺陷。在本文中,我们提出了一种新的 NAS 框架,称为 MIGO-NAS,旨在保证任意搜索空间中的效率和泛化能力。一方面,我们将搜索空间表示为多元概率分布,然后通过新的多元信息几何优化 (MIGO) 对其进行优化。通过使用抽样、训练和测试管道来逼近分布,MIGO 保证了内存效率、训练效率和搜索灵活性。此外,MIGO 是首次降低多元分布中自然梯度的估计误差。另一方面,对于一组特定的约束,通过新的动态规划网络生成 (DPNG) 生成神经结构,这显著降低了在各种硬件环境下的训练成本。实验通过在 CIFAR-10 基准测试上达到 2.39 的测试误差和在 ImageNet 基准测试上达到 21.7 的准确率,证明了我们的方法相对于现有方法的优势,搜索分别只需要 1.5 GPU 小时和 96 GPU 小时。此外,搜索到的架构可以很好地泛化到计算机视觉任务,包括目标检测和语义分割,即在 Pascal VOC 数据集上压缩 25 倍的 FLOPs 可以获得 6.4 的 mAP 增益,在 Cityscapes 数据集上压缩 29.9 倍的 FLOPs 可以获得仅 1.41 个百分点的性能下降。代码是公开的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验