Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria.
Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010 Graz, Austria.
Carbohydr Polym. 2021 May 15;260:117772. doi: 10.1016/j.carbpol.2021.117772. Epub 2021 Feb 11.
Nanoparticle-polymer composites are important functional materials but structural control of their assembly is challenging. Owing to its crystalline internal structure and tunable nanoscale morphology, cellulose is promising polymer scaffold for templating such composite materials. Here, we show bottom-up synthesis of reducing end thiol-modified cellulose chains by iterative bi-enzymatic β-1,4-glycosylation of 1-thio-β-d-glucose (10 mM), to a degree of polymerization of ∼8 and in a yield of ∼41% on the donor substrate (α-d-glucose 1-phosphate, 100 mM). Synthetic cellulose oligomers self-assemble into highly ordered crystalline (cellulose allomorph II) material showing long (micrometers) and thin nanosheet-like morphologies, with thickness of 5-7 nm. Silver nanoparticles were attached selectively and well dispersed on the surface of the thiol-modified cellulose, in excellent yield (≥ 95%) and high loading efficiency (∼2.2 g silver/g thiol-cellulose). Examined against Escherichia coli and Staphylococcus aureus, surface-patterned nanoparticles show excellent biocidal activity. Bottom-up approach by chemical design to a functional cellulose nanocomposite is presented. Synthetic thiol-containing nanocellulose can expand the scope of top-down produced cellulose materials.
纳米粒子-聚合物复合材料是重要的功能材料,但它们的组装结构控制具有挑战性。由于纤维素具有结晶的内部结构和可调节的纳米级形态,因此它是用于模板化此类复合材料的有前途的聚合物支架。在这里,我们展示了通过迭代双酶β-1,4-糖苷化 1-硫代-β-d-葡萄糖(10 mM),将还原端巯基修饰的纤维素链合成到聚合度约为 8,产率约为 41%(在供体底物α-d-葡萄糖 1-磷酸,100 mM)。合成纤维素低聚物自组装成高度有序的结晶(纤维素变体 II)材料,具有长(微米级)和薄纳米片状形态,厚度为 5-7nm。银纳米粒子选择性地并很好地分散在巯基修饰的纤维素表面上,产率高(≥95%)且负载效率高(~2.2 g 银/g 巯基-纤维素)。对大肠杆菌和金黄色葡萄球菌进行测试,表面图案化的纳米粒子显示出优异的杀菌活性。本文提出了通过化学设计从下至上的方法来制备功能性纤维素纳米复合材料。含硫的合成纳米纤维素可以扩展通过自上而下方法生产的纤维素材料的范围。