Suppr超能文献

将 DeepSARM 方法用于双靶 ligands 的设计。

Adapting the DeepSARM approach for dual-target ligand design.

机构信息

Institute for Theoretical Medicine, Inc., 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-0012, Japan.

Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, 53115, Bonn, Germany.

出版信息

J Comput Aided Mol Des. 2021 May;35(5):587-600. doi: 10.1007/s10822-021-00379-5. Epub 2021 Mar 13.

Abstract

The structure-activity relationship (SAR) matrix (SARM) methodology and data structure was originally developed to extract structurally related compound series from data sets of any composition, organize these series in matrices reminiscent of R-group tables, and visualize SAR patterns. The SARM approach combines the identification of structural relationships between series of active compounds with analog design, which is facilitated by systematically exploring combinations of core structures and substituents that have not been synthesized. The SARM methodology was extended through the introduction of DeepSARM, which added deep learning and generative modeling to target-based analog design by taking compound information from related targets into account to further increase structural novelty. Herein, we present the foundations of the SARM methodology and discuss how DeepSARM modeling can be adapted for the design of compounds with dual-target activity. Generating dual-target compounds represents an equally attractive and challenging task for polypharmacology-oriented drug discovery. The DeepSARM-based approach is illustrated using a computational proof-of-concept application focusing on the design of candidate inhibitors for two prominent anti-cancer targets.

摘要

结构-活性关系 (SAR) 矩阵 (SARM) 方法和数据结构最初是为了从任何组成的数据集中提取结构相关的化合物系列而开发的,将这些系列组织在类似于 R 基团表的矩阵中,并可视化 SAR 模式。SARM 方法结合了活性化合物系列之间的结构关系的识别与类似物设计,这通过系统地探索尚未合成的核心结构和取代基的组合来实现。SARM 方法通过引入 DeepSARM 得到了扩展,DeepSARM 通过考虑相关靶标中的化合物信息,将深度学习和生成模型应用于基于靶标的类似物设计,从而进一步提高结构新颖性。本文介绍了 SARM 方法的基础,并讨论了如何适应 DeepSARM 模型来设计具有双重靶标活性的化合物。针对多靶点药物发现,生成双重靶标化合物是一项同样具有吸引力和挑战性的任务。该基于 DeepSARM 的方法通过一个计算概念验证应用程序进行了说明,该应用程序专注于设计两个著名抗癌靶标的候选抑制剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5ff/8131309/94f1a905a73c/10822_2021_379_Fig1a_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验