Suppr超能文献

基于网络的转录组数据分析认知障碍和记忆缺陷。

Network-Based Analysis of Cognitive Impairment and Memory Deficits from Transcriptome Data.

机构信息

Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.

出版信息

J Mol Neurosci. 2021 Nov;71(11):2415-2428. doi: 10.1007/s12031-021-01807-9. Epub 2021 Mar 13.

Abstract

Aging is an inevitable process that negatively affects all living organisms and their vital functions. The brain is one of the most important organs in living beings and is primarily impacted by aging. The molecular mechanisms of learning, memory and cognition are altered over time, and the impairment in these mechanisms can lead to neurodegenerative diseases. Transcriptomics can be used to study these impairments to acquire more detailed information on the affected molecular mechanisms. Here we analyzed learning- and memory-related transcriptome data by mapping it on the organism-specific protein-protein interactome network. Subnetwork discovery algorithms were applied to discover highly dysregulated subnetworks, which were complemented with co-expression-based interactions. The functional analysis shows that the identified subnetworks are enriched with genes having roles in synaptic plasticity, gliogenesis, neurogenesis and cognition, which are reported to be related to memory and learning. With a detailed analysis, we show that the results from different subnetwork discovery algorithms or from different transcriptomic datasets can be successfully reconciled, leading to a memory-learning network that sheds light on the molecular mechanisms behind aging and memory-related impairments.

摘要

衰老是一个不可避免的过程,会对所有生物及其重要功能产生负面影响。大脑是生物体内最重要的器官之一,主要受到衰老的影响。学习、记忆和认知的分子机制随着时间的推移而发生变化,这些机制的损伤会导致神经退行性疾病。转录组学可用于研究这些损伤,以获取受影响分子机制的更详细信息。在这里,我们通过将与学习和记忆相关的转录组数据映射到特定于生物体的蛋白质-蛋白质互作网络上来分析这些数据。应用子网络发现算法来发现高度失调的子网络,并补充基于共表达的相互作用。功能分析表明,所鉴定的子网络富含在突触可塑性、神经发生和认知中起作用的基因,这些基因被报道与记忆和学习有关。通过详细分析,我们表明不同的子网络发现算法或不同的转录组数据集的结果可以成功地协调,从而形成一个记忆-学习网络,揭示了衰老和与记忆相关的损伤背后的分子机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验