Suppr超能文献

贝叶斯生存分析与 BUGS。

Bayesian survival analysis with BUGS.

机构信息

Department of Statistics, Pontificia Universidad Católica de Chile, Santiago, Chile.

Plant Protection and Biotechnology Centre, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain.

出版信息

Stat Med. 2021 May 30;40(12):2975-3020. doi: 10.1002/sim.8933. Epub 2021 Mar 13.

Abstract

Survival analysis is one of the most important fields of statistics in medicine and biological sciences. In addition, the computational advances in the last decades have favored the use of Bayesian methods in this context, providing a flexible and powerful alternative to the traditional frequentist approach. The objective of this article is to summarize some of the most popular Bayesian survival models, such as accelerated failure time, proportional hazards, mixture cure, competing risks, multi-state, frailty, and joint models of longitudinal and survival data. Moreover, an implementation of each presented model is provided using a BUGS syntax that can be run with JAGS from the R programming language. Reference to other Bayesian R-packages is also discussed.

摘要

生存分析是医学和生物科学中统计学最重要的领域之一。此外,过去几十年的计算进展促进了贝叶斯方法在这种情况下的使用,为传统的频率派方法提供了灵活而强大的替代方法。本文的目的是总结一些最流行的贝叶斯生存模型,如加速失效时间、比例风险、混合治愈、竞争风险、多状态、脆弱性和纵向与生存数据的联合模型。此外,还使用可以使用 R 编程语言中的 JAGS 运行的 BUGS 语法提供了每个呈现模型的实现。还讨论了其他贝叶斯 R 包的引用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验