Suppr超能文献

i-PATHWAY:澳大利亚前瞻性出生队列中儿童肥胖预测模型的建立和验证。

i-PATHWAY: Development and validation of a prediction model for childhood obesity in an Australian prospective birth cohort.

机构信息

Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.

Digital Health Cooperative Research Centre, Australian Government, Sydney, New South Wales, Australia.

出版信息

J Paediatr Child Health. 2021 Aug;57(8):1250-1258. doi: 10.1111/jpc.15436. Epub 2021 Mar 13.

Abstract

AIM

To develop and validate a model (i-PATHWAY) to predict childhood (age 8-9 years) overweight/obesity from infancy (age 12 months) using an Australian prospective birth cohort.

METHODS

The Transparent Reporting of a multivariable Prediction model for individual Prognosis or Diagnosis (TRIPOD) checklist was followed. Participants were n = 1947 children (aged 8-9 years) from the Raine Study Gen2 - an Australian prospective birth cohort - who had complete anthropometric measurement data available at follow up. The primary outcome was childhood overweight or obesity (age 8-9 years), defined by age- and gender-specific cut-offs. Multiple imputation was performed to handle missing data. Predictors were selected using 2000 unique backward stepwise logistic regression models. Predictive performance was assessed via: calibration, discrimination and decision-threshold analysis. Internal validation of i-PATHWAY was conducted using bootstrapping (1000 repetitions) to adjust for optimism and improve reliability. A clinical model was developed to support relevance to practice.

RESULTS

At age 8-9 years, 18.9% (n = 367) of children were classified with overweight or obesity. i-PATHWAY predictors included: weight change (0-1 year); maternal pre-pregnancy body mass index (BMI); paternal BMI; maternal smoking during pregnancy; premature birth; infant sleep patterns; and sex. After validation, predictive accuracy was acceptable: calibration slope = 0.956 (0.952-0.960), intercept = -0.052 (-0.063, -0.048), area under the curve = 0.737 (0.736-0.738), optimised sensitivity = 0.703(0.568-0.790), optimised specificity = 0.646 (0.571-0.986). The clinical model retained acceptable predictive accuracy without paternal BMI.

CONCLUSIONS

i-PATHWAY is a simple, valid and clinically relevant prediction model for childhood overweight/obesity. After further validation, this model can influence state and national health policy for overweight/obesity screening in the early years.

摘要

目的

利用澳大利亚前瞻性出生队列,开发并验证一种模型(i-PATHWAY),用于预测儿童期(8-9 岁)超重/肥胖,预测指标为婴儿期(12 个月)数据。

方法

遵循透明报告多变量预测模型个体预后或诊断(TRIPOD)清单。参与者为 1947 名儿童(8-9 岁),来自 Raine 研究 Gen2-澳大利亚前瞻性出生队列,在随访时具有完整的人体测量数据。主要结局为儿童超重或肥胖(8-9 岁),定义为年龄和性别特异性切点。使用 2000 个独特的向后逐步逻辑回归模型进行多重插补以处理缺失数据。使用预测性能通过校准、区分和决策阈值分析进行评估。通过 1000 次重复的自举法对内嵌 i-PATHWAY 进行验证,以调整乐观程度并提高可靠性。开发了一个临床模型以支持与实践相关。

结果

在 8-9 岁时,18.9%(n=367)的儿童超重或肥胖。i-PATHWAY 的预测因素包括:体重变化(0-1 岁);母亲怀孕前的 BMI;父亲的 BMI;母亲怀孕期间吸烟;早产;婴儿睡眠模式;和性别。验证后,预测准确性可接受:校准斜率=0.956(0.952-0.960),截距=-0.052(-0.063,-0.048),曲线下面积=0.737(0.736-0.738),最佳灵敏度=0.703(0.568-0.790),最佳特异性=0.646(0.571-0.986)。临床模型保留了可接受的预测准确性,而无需父亲的 BMI。

结论

i-PATHWAY 是一种简单、有效且具有临床相关性的儿童超重/肥胖预测模型。进一步验证后,该模型可影响国家和州的超重/肥胖早期筛查政策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验