UCLouvain - Institut de Recherche Expérimentale et Clinique - Molecular Imaging Radiotherapy and Oncology (MIRO), Brussels, Belgium.
KU Leuven - Department of Oncology - Laboratory of Experimental Radiotherapy, Leuven, Belgium; University Hospitals Leuven, Department of Radiation Oncology, 3000 Leuven, Belgium.
Phys Med. 2021 Mar;83:52-63. doi: 10.1016/j.ejmp.2021.02.026. Epub 2021 Mar 10.
To investigate the effect of data quality and quantity on the performance of deep learning (DL) models, for dose prediction of intensity-modulated radiotherapy (IMRT) of esophageal cancer.
Two databases were used: a variable database (VarDB) with 56 clinical cases extracted retrospectively, including user-dependent variability in delineation and planning, different machines and beam configurations; and a homogenized database (HomDB), created to reduce this variability by re-contouring and re-planning all patients with a fixed class-solution protocol. Experiment 1 analysed the user-dependent variability, using 26 patients planned with the same machine and beam setup (E26-VarDB versus E26-HomDB). Experiment 2 increased the training set by groups of 10 patients (E16, E26, E36, E46, and E56) for both databases. Model evaluation metrics were the mean absolute error (MAE) for selected dose-volume metrics and the global MAE for all body voxels.
For Experiment 1, E26-HomDB reduced the MAE for the considered dose-volume metrics compared to E26-VarDB (e.g. reduction of 0.2 Gy for D95-PTV, 1.2 Gy for Dmean-heart or 3.3% for V5-lungs). For Experiment 2, increasing the database size slightly improved performance for HomDB models (e.g. decrease in global MAE of 0.13 Gy for E56-HomDB versus E26-HomDB), but increased the error for the VarDB models (e.g. increase in global MAE of 0.20 Gy for E56-VarDB versus E26-VarDB).
A small database may suffice to obtain good DL prediction performance, provided that homogenous training data is used. Data variability reduces the performance of DL models, which is further pronounced when increasing the training set.
研究数据质量和数量对深度学习(DL)模型在食管癌调强放疗(IMRT)剂量预测中的性能的影响。
使用两个数据库:一个是具有 56 例临床病例的变量数据库(VarDB),包括勾画和计划中的用户依赖性变化、不同的机器和射束配置;另一个是均质数据库(HomDB),创建该数据库是为了通过使用固定的分类解决方案协议重新勾画和重新计划所有患者来减少这种可变性。实验 1 分析了用户依赖性变异性,使用了 26 例使用相同机器和射束设置计划的患者(E26-VarDB 与 E26-HomDB)。实验 2 为两个数据库增加了由 10 例患者组成的训练集(E16、E26、E36、E46 和 E56)。模型评估指标为所选剂量-体积指标的平均绝对误差(MAE)和所有体素的全局 MAE。
对于实验 1,与 E26-VarDB 相比,E26-HomDB 降低了所考虑的剂量-体积指标的 MAE(例如,PTV 的 D95 降低 0.2Gy,心脏的 Dmean 降低 1.2Gy,肺的 V5 降低 3.3%)。对于实验 2,增加数据库大小略微提高了 HomDB 模型的性能(例如,E56-HomDB 相对于 E26-HomDB 的全局 MAE 降低 0.13Gy),但增加了 VarDB 模型的误差(例如,E56-VarDB 相对于 E26-VarDB 的全局 MAE 增加 0.20Gy)。
如果使用同质的训练数据,一个较小的数据库可能足以获得良好的 DL 预测性能。数据变异性降低了 DL 模型的性能,当增加训练集时,这种影响更加明显。