Suppr超能文献

先导化合物优化生成含硒米康唑 CYP51 抑制剂,改善了药理学特性,可用于治疗真菌感染。

Lead optimization generates selenium-containing miconazole CYP51 inhibitors with improved pharmacological profile for the treatment of fungal infections.

机构信息

Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 China.

School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.

出版信息

Eur J Med Chem. 2021 Apr 15;216:113337. doi: 10.1016/j.ejmech.2021.113337. Epub 2021 Mar 2.

Abstract

A series of selenium-containing miconazole derivatives were identified as potent antifungal drugs in our previous study. Representative compound A03 (MIC = 0.01 μg/mL against C.alb. 5314) proved efficacious in inhibiting the growth of fungal pathogens. However, further study showed lead compound A03 exhibited potential hemolysis, significant cytotoxic effect and unfavorable metabolic stability and was therefore modified to overcome these drawbacks. In this article, the further optimization of selenium-containing miconazole derivatives resulted in the discovery of similarly potent compound B17 (MIC = 0.02 μg/mL against C.alb. 5314), exhibiting a superior pharmacological profile with decreased rate of metabolism, cytotoxic effect and hemolysis. Furthermore, compound B17 showed fungicidal activity against Candida albicans and significant effects on the treatment of resistant Candida albicans infections. Meanwhile, compound B17 not only could reduce the ergosterol biosynthesis pathway by inhibiting CYP51, but also inhibited biofilm formation. More importantly, compound B17 also shows promising in vivo efficacy after intraperitoneal injection and the PK study of compound B17 was evaluated. In addition, molecular docking studies provide a model for the interaction between the compound B17 and the CYP51 protein. Overall, we believe that these selenium-containing miconazole compounds can be further developed for the potential treatment of fungal infections.

摘要

在我们之前的研究中,一系列含硒的咪康唑衍生物被鉴定为有效的抗真菌药物。代表性化合物 A03(对 C.alb.5314 的 MIC=0.01μg/mL)被证明能有效抑制真菌病原体的生长。然而,进一步的研究表明,先导化合物 A03 表现出潜在的溶血作用、显著的细胞毒性作用和不利的代谢稳定性,因此需要进行修饰以克服这些缺点。在本文中,对含硒的咪康唑衍生物进行了进一步的优化,发现了同样有效的化合物 B17(对 C.alb.5314 的 MIC=0.02μg/mL),具有更好的药理学特性,降低了代谢率、细胞毒性和溶血作用。此外,化合物 B17 对白色念珠菌表现出杀菌活性,并对耐药白色念珠菌感染的治疗有显著效果。同时,化合物 B17 不仅可以通过抑制 CYP51 来减少麦角固醇生物合成途径,还可以抑制生物膜的形成。更重要的是,化合物 B17 在腹腔注射后也显示出有希望的体内疗效,并对化合物 B17 的 PK 研究进行了评估。此外,分子对接研究为化合物 B17 与 CYP51 蛋白的相互作用提供了模型。总的来说,我们相信这些含硒的咪康唑化合物可以进一步开发用于治疗真菌感染。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验