Shin Minsuk, Bhattachrya Anirban, Johnson Valen E
Department of Statistics, Texas A&M University.
J Am Stat Assoc. 2020;115(532):1784-1797. doi: 10.1080/01621459.2019.1654875. Epub 2019 Sep 17.
We introduce a new shrinkage prior on function spaces, called the functional horseshoe prior (fHS), that encourages shrinkage towards parametric classes of functions. Unlike other shrinkage priors for parametric models, the fHS shrinkage acts on the shape of the function rather than inducing sparsity on model parameters. We study the efficacy of the proposed approach by showing an adaptive posterior concentration property on the function. We also demonstrate consistency of the model selection procedure that thresholds the shrinkage parameter of the functional horseshoe prior. We apply the fHS prior to nonparametric additive models and compare its performance with procedures based on the standard horseshoe prior and several penalized likelihood approaches. We find that the new procedure achieves smaller estimation error and more accurate model selection than other procedures in several simulated and real examples. The supplementary material for this article, which contains additional simulated and real data examples, MCMC diagnostics, and proofs of the theoretical results, is available online.
我们引入了一种新的函数空间收缩先验,称为函数马蹄先验(fHS),它鼓励向函数的参数类进行收缩。与参数模型的其他收缩先验不同,fHS收缩作用于函数的形状,而不是在模型参数上诱导稀疏性。我们通过展示函数上的自适应后验集中性质来研究该方法的有效性。我们还证明了对函数马蹄先验的收缩参数进行阈值处理的模型选择过程的一致性。我们将fHS先验应用于非参数加法模型,并将其性能与基于标准马蹄先验和几种惩罚似然方法的过程进行比较。我们发现,在几个模拟和实际例子中,新方法比其他方法实现了更小的估计误差和更准确的模型选择。本文的补充材料包含额外的模拟和实际数据示例、MCMC诊断以及理论结果的证明,可在线获取。