Liang Mingrui, Koslovsky Matthew D, Hébert Emily T, Businelle Michael S, Vannucci Marina
Department of Statistics, Rice University, Houston, TX, USA.
Department of Statistics, Colorado State University, Fort Collins, CO, USA.
Bayesian Anal. 2024 Dec;19(4):1067-1095. doi: 10.1214/23-ba1380. Epub 2023 May 2.
Functional concurrent, or varying-coefficient, regression models are a form of functional data analysis methods in which functional covariates and outcomes are collected concurrently. Two active areas of research for this class of models are identifying influential functional covariates and clustering their relations across observations. In various applications, researchers have applied and developed methods to address these objectives separately. However, no approach currently performs both tasks simultaneously. In this paper, we propose a fully Bayesian functional concurrent regression mixture model that simultaneously performs functional variable selection and clustering for subject-specific trajectories. Our approach introduces a novel spiked Ewens-Pitman attraction prior that identifies and clusters subjects' trajectories marginally for each functional covariate while using similarities in subjects' auxiliary covariate patterns to inform clustering allocation. Using simulated data, we evaluate the clustering, variable selection, and parameter estimation performance of our approach and compare its performance with alternative spiked processes. We then apply our method to functional data collected in a novel, smartphone-based smoking cessation intervention study to investigate individual-level dynamic relations between smoking behaviors and potential risk factors.
功能并发回归模型,即变系数回归模型,是功能数据分析方法的一种形式,其中功能协变量和结果是同时收集的。这类模型的两个活跃研究领域是识别有影响的功能协变量,并对观察结果中的它们之间的关系进行聚类。在各种应用中,研究人员分别应用和开发了方法来实现这些目标。然而,目前没有一种方法能同时执行这两项任务。在本文中,我们提出了一种全贝叶斯功能并发回归混合模型,该模型同时对特定主题的轨迹进行功能变量选择和聚类。我们的方法引入了一种新颖的尖峰Ewens-Pitman吸引先验,它在为每个功能协变量边际识别和聚类主题轨迹的同时,利用主题辅助协变量模式中的相似性来为聚类分配提供信息。使用模拟数据,我们评估了我们方法的聚类、变量选择和参数估计性能,并将其性能与替代尖峰过程进行比较。然后,我们将我们的方法应用于一项基于智能手机的新型戒烟干预研究中收集的功能数据,以研究吸烟行为与潜在风险因素之间的个体水平动态关系。